Metamath Proof Explorer


Theorem lvecisfrlm

Description: Every vector space is isomorphic to a free module. (Contributed by AV, 7-Mar-2019)

Ref Expression
Hypothesis lvecisfrlm.f F=ScalarW
Assertion lvecisfrlm WLVeckW𝑚FfreeLModk

Proof

Step Hyp Ref Expression
1 lvecisfrlm.f F=ScalarW
2 eqid LBasisW=LBasisW
3 2 lbsex WLVecLBasisW
4 lveclmod WLVecWLMod
5 2 1 lmisfree WLModLBasisWkW𝑚FfreeLModk
6 4 5 syl WLVecLBasisWkW𝑚FfreeLModk
7 3 6 mpbid WLVeckW𝑚FfreeLModk