Metamath Proof Explorer


Theorem lvecpropd

Description: If two structures have the same components (properties), one is a left vector space iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015)

Ref Expression
Hypotheses lvecpropd.1 φ B = Base K
lvecpropd.2 φ B = Base L
lvecpropd.3 φ x B y B x + K y = x + L y
lvecpropd.4 φ F = Scalar K
lvecpropd.5 φ F = Scalar L
lvecpropd.6 P = Base F
lvecpropd.7 φ x P y B x K y = x L y
Assertion lvecpropd φ K LVec L LVec

Proof

Step Hyp Ref Expression
1 lvecpropd.1 φ B = Base K
2 lvecpropd.2 φ B = Base L
3 lvecpropd.3 φ x B y B x + K y = x + L y
4 lvecpropd.4 φ F = Scalar K
5 lvecpropd.5 φ F = Scalar L
6 lvecpropd.6 P = Base F
7 lvecpropd.7 φ x P y B x K y = x L y
8 1 2 3 4 5 6 7 lmodpropd φ K LMod L LMod
9 4 5 eqtr3d φ Scalar K = Scalar L
10 9 eleq1d φ Scalar K DivRing Scalar L DivRing
11 8 10 anbi12d φ K LMod Scalar K DivRing L LMod Scalar L DivRing
12 eqid Scalar K = Scalar K
13 12 islvec K LVec K LMod Scalar K DivRing
14 eqid Scalar L = Scalar L
15 14 islvec L LVec L LMod Scalar L DivRing
16 11 13 15 3bitr4g φ K LVec L LVec