Metamath Proof Explorer


Theorem m2detleiblem7

Description: Lemma 7 for m2detleib . (Contributed by AV, 20-Dec-2018)

Ref Expression
Hypotheses m2detleiblem1.n N = 1 2
m2detleiblem1.p P = Base SymGrp N
m2detleiblem1.y Y = ℤRHom R
m2detleiblem1.s S = pmSgn N
m2detleiblem1.o 1 ˙ = 1 R
m2detleiblem1.i I = inv g R
m2detleiblem1.t · ˙ = R
m2detleiblem1.m - ˙ = - R
Assertion m2detleiblem7 R Ring X Base R Z Base R X + R I 1 ˙ · ˙ Z = X - ˙ Z

Proof

Step Hyp Ref Expression
1 m2detleiblem1.n N = 1 2
2 m2detleiblem1.p P = Base SymGrp N
3 m2detleiblem1.y Y = ℤRHom R
4 m2detleiblem1.s S = pmSgn N
5 m2detleiblem1.o 1 ˙ = 1 R
6 m2detleiblem1.i I = inv g R
7 m2detleiblem1.t · ˙ = R
8 m2detleiblem1.m - ˙ = - R
9 eqid Base R = Base R
10 simpl R Ring Z Base R R Ring
11 simpr R Ring Z Base R Z Base R
12 9 7 5 6 10 11 ringnegl R Ring Z Base R I 1 ˙ · ˙ Z = I Z
13 12 3adant2 R Ring X Base R Z Base R I 1 ˙ · ˙ Z = I Z
14 13 oveq2d R Ring X Base R Z Base R X + R I 1 ˙ · ˙ Z = X + R I Z
15 eqid + R = + R
16 9 15 6 8 grpsubval X Base R Z Base R X - ˙ Z = X + R I Z
17 16 3adant1 R Ring X Base R Z Base R X - ˙ Z = X + R I Z
18 14 17 eqtr4d R Ring X Base R Z Base R X + R I 1 ˙ · ˙ Z = X - ˙ Z