Metamath Proof Explorer


Theorem mapcod

Description: Compose two mappings. (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses mapcod.1 φFAB
mapcod.2 φGBC
Assertion mapcod φFGAC

Proof

Step Hyp Ref Expression
1 mapcod.1 φFAB
2 mapcod.2 φGBC
3 elmapex FABAVBV
4 1 3 syl φAVBV
5 4 simpld φAV
6 elmapex GBCBVCV
7 2 6 syl φBVCV
8 7 simprd φCV
9 elmapi FABF:BA
10 1 9 syl φF:BA
11 elmapi GBCG:CB
12 2 11 syl φG:CB
13 10 12 fcod φFG:CA
14 5 8 13 elmapdd φFGAC