Metamath Proof Explorer


Theorem mapd1dim2lem1N

Description: Value of the map defined by df-mapd at an atom. (Contributed by NM, 10-Feb-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapd1dim2.h H = LHyp K
mapd1dim2.u U = DVecH K W
mapd1dim2.a A = LSAtoms U
mapd1dim2.f F = LFnl U
mapd1dim2.l L = LKer U
mapd1dim2.o O = ocH K W
mapd1dim2.m M = mapd K W
mapd1dim2.k φ K HL W H
mapd1dim2.t φ Q A
Assertion mapd1dim2lem1N φ M Q = f F | v Q O v = L f

Proof

Step Hyp Ref Expression
1 mapd1dim2.h H = LHyp K
2 mapd1dim2.u U = DVecH K W
3 mapd1dim2.a A = LSAtoms U
4 mapd1dim2.f F = LFnl U
5 mapd1dim2.l L = LKer U
6 mapd1dim2.o O = ocH K W
7 mapd1dim2.m M = mapd K W
8 mapd1dim2.k φ K HL W H
9 mapd1dim2.t φ Q A
10 eqid LSubSp U = LSubSp U
11 1 2 8 dvhlmod φ U LMod
12 10 3 11 9 lsatlssel φ Q LSubSp U
13 1 2 10 4 5 6 7 8 12 mapdval4N φ M Q = f F | v Q O v = L f