Metamath Proof Explorer


Theorem mapdheq2biN

Description: Lemmma for ~? mapdh . Part (2) in Baer p. 45. The bidirectional version of mapdheq2 seems to require an additional hypothesis not mentioned in Baer. TODO fix ref. TODO: We probably don't need this; delete if never used. (Contributed by NM, 4-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q=0C
mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh.h H=LHypK
mapdh.m M=mapdKW
mapdh.u U=DVecHKW
mapdh.v V=BaseU
mapdh.s -˙=-U
mapdhc.o 0˙=0U
mapdh.n N=LSpanU
mapdh.c C=LCDualKW
mapdh.d D=BaseC
mapdh.r R=-C
mapdh.j J=LSpanC
mapdh.k φKHLWH
mapdhc.f φFD
mapdh.mn φMNX=JF
mapdhcl.x φXV0˙
mapdhe2.y φYV0˙
mapdhe2.g φGD
mapdh.ne3 φNXNY
mapdh.my φMNY=JG
Assertion mapdheq2biN φIXFY=GIYGX=F

Proof

Step Hyp Ref Expression
1 mapdh.q Q=0C
2 mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
3 mapdh.h H=LHypK
4 mapdh.m M=mapdKW
5 mapdh.u U=DVecHKW
6 mapdh.v V=BaseU
7 mapdh.s -˙=-U
8 mapdhc.o 0˙=0U
9 mapdh.n N=LSpanU
10 mapdh.c C=LCDualKW
11 mapdh.d D=BaseC
12 mapdh.r R=-C
13 mapdh.j J=LSpanC
14 mapdh.k φKHLWH
15 mapdhc.f φFD
16 mapdh.mn φMNX=JF
17 mapdhcl.x φXV0˙
18 mapdhe2.y φYV0˙
19 mapdhe2.g φGD
20 mapdh.ne3 φNXNY
21 mapdh.my φMNY=JG
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 mapdheq2 φIXFY=GIYGX=F
23 20 necomd φNYNX
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 21 18 17 15 23 mapdheq2 φIYGX=FIXFY=G
25 22 24 impbid φIXFY=GIYGX=F