Metamath Proof Explorer


Theorem mapfset

Description: If B is a set, the value of the set exponentiation ( B ^m A ) is the class of all functions from A to B . Generalisation of mapvalg (which does not require ax-rep ) to arbitrary domains. Note that the class { f | f : A --> B } can only contain set-functions, as opposed to arbitrary class-functions. When A is a proper class, there can be no set-functions on it, so the above class is empty (see also fsetdmprc0 ), hence a set. In this case, both sides of the equality in this theorem are the empty set. (Contributed by AV, 8-Aug-2024)

Ref Expression
Assertion mapfset B V f | f : A B = B A

Proof

Step Hyp Ref Expression
1 vex m V
2 feq1 f = m f : A B m : A B
3 1 2 elab m f | f : A B m : A B
4 simpr m : A B B V B V
5 dmfex m V m : A B A V
6 1 5 mpan m : A B A V
7 6 adantr m : A B B V A V
8 4 7 elmapd m : A B B V m B A m : A B
9 8 exbiri m : A B B V m : A B m B A
10 9 pm2.43b B V m : A B m B A
11 elmapi m B A m : A B
12 10 11 impbid1 B V m : A B m B A
13 3 12 syl5bb B V m f | f : A B m B A
14 13 eqrdv B V f | f : A B = B A