Metamath Proof Explorer


Theorem mapvalg

Description: The value of set exponentiation. ( A ^m B ) is the set of all functions that map from B to A . Definition 10.24 of Kunen p. 24. (Contributed by NM, 8-Dec-2003) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion mapvalg ACBDAB=f|f:BA

Proof

Step Hyp Ref Expression
1 mapex BDACf|f:BAV
2 1 ancoms ACBDf|f:BAV
3 elex ACAV
4 elex BDBV
5 feq3 x=Af:yxf:yA
6 5 abbidv x=Af|f:yx=f|f:yA
7 feq2 y=Bf:yAf:BA
8 7 abbidv y=Bf|f:yA=f|f:BA
9 df-map 𝑚=xV,yVf|f:yx
10 6 8 9 ovmpog AVBVf|f:BAVAB=f|f:BA
11 10 3expia AVBVf|f:BAVAB=f|f:BA
12 3 4 11 syl2an ACBDf|f:BAVAB=f|f:BA
13 2 12 mpd ACBDAB=f|f:BA