Metamath Proof Explorer


Theorem marepvval0

Description: Second substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvfval.a A=NMatR
marepvfval.b B=BaseA
marepvfval.q Q=NmatRepVR
marepvfval.v V=BaseRN
Assertion marepvval0 MBCVMQC=kNiN,jNifj=kCiiMj

Proof

Step Hyp Ref Expression
1 marepvfval.a A=NMatR
2 marepvfval.b B=BaseA
3 marepvfval.q Q=NmatRepVR
4 marepvfval.v V=BaseRN
5 1 2 matrcl MBNFinRV
6 5 simpld MBNFin
7 6 adantr MBCVNFin
8 7 mptexd MBCVkNiN,jNifj=kCiiMjV
9 fveq1 c=Cci=Ci
10 9 adantl m=Mc=Cci=Ci
11 oveq m=Mimj=iMj
12 11 adantr m=Mc=Cimj=iMj
13 10 12 ifeq12d m=Mc=Cifj=kciimj=ifj=kCiiMj
14 13 mpoeq3dv m=Mc=CiN,jNifj=kciimj=iN,jNifj=kCiiMj
15 14 mpteq2dv m=Mc=CkNiN,jNifj=kciimj=kNiN,jNifj=kCiiMj
16 1 2 3 4 marepvfval Q=mB,cVkNiN,jNifj=kciimj
17 15 16 ovmpoga MBCVkNiN,jNifj=kCiiMjVMQC=kNiN,jNifj=kCiiMj
18 8 17 mpd3an3 MBCVMQC=kNiN,jNifj=kCiiMj