Metamath Proof Explorer


Theorem marypha2lem2

Description: Lemma for marypha2 . Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015)

Ref Expression
Hypothesis marypha2lem.t T=xAx×Fx
Assertion marypha2lem2 T=xy|xAyFx

Proof

Step Hyp Ref Expression
1 marypha2lem.t T=xAx×Fx
2 sneq x=zx=z
3 fveq2 x=zFx=Fz
4 2 3 xpeq12d x=zx×Fx=z×Fz
5 4 cbviunv xAx×Fx=zAz×Fz
6 df-xp z×Fz=xy|xzyFz
7 6 a1i zAz×Fz=xy|xzyFz
8 7 iuneq2i zAz×Fz=zAxy|xzyFz
9 iunopab zAxy|xzyFz=xy|zAxzyFz
10 velsn xzx=z
11 equcom x=zz=x
12 10 11 bitri xzz=x
13 12 anbi1i xzyFzz=xyFz
14 13 rexbii zAxzyFzzAz=xyFz
15 fveq2 z=xFz=Fx
16 15 eleq2d z=xyFzyFx
17 16 ceqsrexbv zAz=xyFzxAyFx
18 14 17 bitri zAxzyFzxAyFx
19 18 opabbii xy|zAxzyFz=xy|xAyFx
20 8 9 19 3eqtri zAz×Fz=xy|xAyFx
21 1 5 20 3eqtri T=xy|xAyFx