Metamath Proof Explorer


Theorem mat0dimscm

Description: The scalar multiplication in the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019)

Ref Expression
Hypothesis mat0dim.a A=MatR
Assertion mat0dimscm RRingXBaseRXA=

Proof

Step Hyp Ref Expression
1 mat0dim.a A=MatR
2 simpl RRingXBaseRRRing
3 0fin Fin
4 1 matlmod FinRRingALMod
5 3 2 4 sylancr RRingXBaseRALMod
6 1 matsca2 FinRRingR=ScalarA
7 3 6 mpan RRingR=ScalarA
8 7 fveq2d RRingBaseR=BaseScalarA
9 8 eleq2d RRingXBaseRXBaseScalarA
10 9 biimpa RRingXBaseRXBaseScalarA
11 0ex V
12 11 snid
13 1 fveq2i BaseA=BaseMatR
14 mat0dimbas0 RRingBaseMatR=
15 13 14 eqtrid RRingBaseA=
16 12 15 eleqtrrid RRingBaseA
17 16 adantr RRingXBaseRBaseA
18 eqid BaseA=BaseA
19 eqid ScalarA=ScalarA
20 eqid A=A
21 eqid BaseScalarA=BaseScalarA
22 18 19 20 21 lmodvscl ALModXBaseScalarABaseAXABaseA
23 5 10 17 22 syl3anc RRingXBaseRXABaseA
24 15 eleq2d RRingXABaseAXA
25 elsni XAXA=
26 24 25 syl6bi RRingXABaseAXA=
27 2 23 26 sylc RRingXBaseRXA=