Metamath Proof Explorer


Theorem mavmuldm

Description: The domain of the matrix vector multiplication function. (Contributed by AV, 27-Feb-2019)

Ref Expression
Hypotheses mavmuldm.b B=BaseR
mavmuldm.c C=BM×N
mavmuldm.d D=BN
mavmuldm.t ·˙=RmaVecMulMN
Assertion mavmuldm RVMFinNFindom·˙=C×D

Proof

Step Hyp Ref Expression
1 mavmuldm.b B=BaseR
2 mavmuldm.c C=BM×N
3 mavmuldm.d D=BN
4 mavmuldm.t ·˙=RmaVecMulMN
5 eqid R=R
6 simp1 RVMFinNFinRV
7 simp2 RVMFinNFinMFin
8 simp3 RVMFinNFinNFin
9 4 1 5 6 7 8 mvmulfval RVMFinNFin·˙=xBM×N,yBNiMRjNixjRyj
10 9 dmeqd RVMFinNFindom·˙=domxBM×N,yBNiMRjNixjRyj
11 mptexg MFiniMRjNixjRyjV
12 11 3ad2ant2 RVMFinNFiniMRjNixjRyjV
13 12 a1d RVMFinNFinxBM×NyBNiMRjNixjRyjV
14 13 ralrimivv RVMFinNFinxBM×NyBNiMRjNixjRyjV
15 eqid xBM×N,yBNiMRjNixjRyj=xBM×N,yBNiMRjNixjRyj
16 15 dmmpoga xBM×NyBNiMRjNixjRyjVdomxBM×N,yBNiMRjNixjRyj=BM×N×BN
17 14 16 syl RVMFinNFindomxBM×N,yBNiMRjNixjRyj=BM×N×BN
18 2 eqcomi BM×N=C
19 18 a1i RVMFinNFinBM×N=C
20 3 a1i RVMFinNFinD=BN
21 20 eqcomd RVMFinNFinBN=D
22 19 21 xpeq12d RVMFinNFinBM×N×BN=C×D
23 10 17 22 3eqtrd RVMFinNFindom·˙=C×D