Metamath Proof Explorer


Theorem mblss

Description: A measurable set is a subset of the reals. (Contributed by Mario Carneiro, 17-Mar-2014)

Ref Expression
Assertion mblss AdomvolA

Proof

Step Hyp Ref Expression
1 ismbl AdomvolAx𝒫vol*xvol*x=vol*xA+vol*xA
2 1 simplbi AdomvolA