Metamath Proof Explorer


Theorem mblvon

Description: The n-dimensional Lebesgue measure of a measurable set is the same as its n-dimensional Lebesgue outer measure. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses mblvon.1 φXFin
mblvon.2 φAdomvolnX
Assertion mblvon φvolnXA=voln*XA

Proof

Step Hyp Ref Expression
1 mblvon.1 φXFin
2 mblvon.2 φAdomvolnX
3 1 vonval φvolnX=voln*XCaraGenvoln*X
4 3 fveq1d φvolnXA=voln*XCaraGenvoln*XA
5 1 dmvon φdomvolnX=CaraGenvoln*X
6 2 5 eleqtrd φACaraGenvoln*X
7 fvres ACaraGenvoln*Xvoln*XCaraGenvoln*XA=voln*XA
8 6 7 syl φvoln*XCaraGenvoln*XA=voln*XA
9 4 8 eqtrd φvolnXA=voln*XA