Metamath Proof Explorer


Theorem meetdm3

Description: The meet of any two elements always exists iff all unordered pairs have GLB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024)

Ref Expression
Hypotheses joindm2.b B=BaseK
joindm2.k φKV
meetdm2.g G=glbK
meetdm2.m ˙=meetK
meetdm3.l ˙=K
Assertion meetdm3 φdom˙=B×BxByB∃!zBz˙xz˙ywBw˙xw˙yw˙z

Proof

Step Hyp Ref Expression
1 joindm2.b B=BaseK
2 joindm2.k φKV
3 meetdm2.g G=glbK
4 meetdm2.m ˙=meetK
5 meetdm3.l ˙=K
6 1 2 3 4 meetdm2 φdom˙=B×BxByBxydomG
7 simprl φxByBxB
8 simprr φxByByB
9 7 8 prssd φxByBxyB
10 biid vxyz˙vwBvxyw˙vw˙zvxyz˙vwBvxyw˙vw˙z
11 1 5 3 10 2 glbeldm φxydomGxyB∃!zBvxyz˙vwBvxyw˙vw˙z
12 11 baibd φxyBxydomG∃!zBvxyz˙vwBvxyw˙vw˙z
13 9 12 syldan φxByBxydomG∃!zBvxyz˙vwBvxyw˙vw˙z
14 2 adantr φxByBKV
15 1 5 4 14 7 8 meetval2lem xByBvxyz˙vwBvxyw˙vw˙zz˙xz˙ywBw˙xw˙yw˙z
16 15 reubidv xByB∃!zBvxyz˙vwBvxyw˙vw˙z∃!zBz˙xz˙ywBw˙xw˙yw˙z
17 16 adantl φxByB∃!zBvxyz˙vwBvxyw˙vw˙z∃!zBz˙xz˙ywBw˙xw˙yw˙z
18 13 17 bitrd φxByBxydomG∃!zBz˙xz˙ywBw˙xw˙yw˙z
19 18 2ralbidva φxByBxydomGxByB∃!zBz˙xz˙ywBw˙xw˙yw˙z
20 6 19 bitrd φdom˙=B×BxByB∃!zBz˙xz˙ywBw˙xw˙yw˙z