Description: The meet of any two elements always exists iff all unordered pairs have GLB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | joindm2.b | |
|
joindm2.k | |
||
meetdm2.g | |
||
meetdm2.m | |
||
meetdm3.l | |
||
Assertion | meetdm3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joindm2.b | |
|
2 | joindm2.k | |
|
3 | meetdm2.g | |
|
4 | meetdm2.m | |
|
5 | meetdm3.l | |
|
6 | 1 2 3 4 | meetdm2 | |
7 | simprl | |
|
8 | simprr | |
|
9 | 7 8 | prssd | |
10 | biid | |
|
11 | 1 5 3 10 2 | glbeldm | |
12 | 11 | baibd | |
13 | 9 12 | syldan | |
14 | 2 | adantr | |
15 | 1 5 4 14 7 8 | meetval2lem | |
16 | 15 | reubidv | |
17 | 16 | adantl | |
18 | 13 17 | bitrd | |
19 | 18 | 2ralbidva | |
20 | 6 19 | bitrd | |