Metamath Proof Explorer


Theorem metustel

Description: Define a filter base F generated by a metric D . (Contributed by Thierry Arnoux, 22-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis metust.1 F=rana+D-10a
Assertion metustel DPsMetXBFa+B=D-10a

Proof

Step Hyp Ref Expression
1 metust.1 F=rana+D-10a
2 1 eleq2i BFBrana+D-10a
3 elex Brana+D-10aBV
4 3 a1i DPsMetXBrana+D-10aBV
5 cnvexg DPsMetXD-1V
6 imaexg D-1VD-10aV
7 eleq1a D-10aVB=D-10aBV
8 5 6 7 3syl DPsMetXB=D-10aBV
9 8 rexlimdvw DPsMetXa+B=D-10aBV
10 eqid a+D-10a=a+D-10a
11 10 elrnmpt BVBrana+D-10aa+B=D-10a
12 11 a1i DPsMetXBVBrana+D-10aa+B=D-10a
13 4 9 12 pm5.21ndd DPsMetXBrana+D-10aa+B=D-10a
14 2 13 bitrid DPsMetXBFa+B=D-10a