Metamath Proof Explorer


Theorem metuval

Description: Value of the uniform structure generated by metric D . (Contributed by Thierry Arnoux, 1-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion metuval DPsMetXmetUnifD=X×XfilGenrana+D-10a

Proof

Step Hyp Ref Expression
1 df-metu metUnif=dranPsMetdomdomd×domdomdfilGenrana+d-10a
2 simpr DPsMetXd=Dd=D
3 2 dmeqd DPsMetXd=Ddomd=domD
4 3 dmeqd DPsMetXd=Ddomdomd=domdomD
5 psmetdmdm DPsMetXX=domdomD
6 5 adantr DPsMetXd=DX=domdomD
7 4 6 eqtr4d DPsMetXd=Ddomdomd=X
8 7 sqxpeqd DPsMetXd=Ddomdomd×domdomd=X×X
9 simplr DPsMetXd=Da+d=D
10 9 cnveqd DPsMetXd=Da+d-1=D-1
11 10 imaeq1d DPsMetXd=Da+d-10a=D-10a
12 11 mpteq2dva DPsMetXd=Da+d-10a=a+D-10a
13 12 rneqd DPsMetXd=Drana+d-10a=rana+D-10a
14 8 13 oveq12d DPsMetXd=Ddomdomd×domdomdfilGenrana+d-10a=X×XfilGenrana+D-10a
15 elfvunirn DPsMetXDranPsMet
16 ovexd DPsMetXX×XfilGenrana+D-10aV
17 1 14 15 16 fvmptd2 DPsMetXmetUnifD=X×XfilGenrana+D-10a