Metamath Proof Explorer


Theorem mgmhmlin

Description: A magma homomorphism preserves the binary operation. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypotheses mgmhmlin.b B=BaseS
mgmhmlin.p +˙=+S
mgmhmlin.q ˙=+T
Assertion mgmhmlin FSMgmHomTXBYBFX+˙Y=FX˙FY

Proof

Step Hyp Ref Expression
1 mgmhmlin.b B=BaseS
2 mgmhmlin.p +˙=+S
3 mgmhmlin.q ˙=+T
4 eqid BaseT=BaseT
5 1 4 2 3 ismgmhm FSMgmHomTSMgmTMgmF:BBaseTxByBFx+˙y=Fx˙Fy
6 fvoveq1 x=XFx+˙y=FX+˙y
7 fveq2 x=XFx=FX
8 7 oveq1d x=XFx˙Fy=FX˙Fy
9 6 8 eqeq12d x=XFx+˙y=Fx˙FyFX+˙y=FX˙Fy
10 oveq2 y=YX+˙y=X+˙Y
11 10 fveq2d y=YFX+˙y=FX+˙Y
12 fveq2 y=YFy=FY
13 12 oveq2d y=YFX˙Fy=FX˙FY
14 11 13 eqeq12d y=YFX+˙y=FX˙FyFX+˙Y=FX˙FY
15 9 14 rspc2v XBYBxByBFx+˙y=Fx˙FyFX+˙Y=FX˙FY
16 15 com12 xByBFx+˙y=Fx˙FyXBYBFX+˙Y=FX˙FY
17 16 ad2antll SMgmTMgmF:BBaseTxByBFx+˙y=Fx˙FyXBYBFX+˙Y=FX˙FY
18 5 17 sylbi FSMgmHomTXBYBFX+˙Y=FX˙FY
19 18 3impib FSMgmHomTXBYBFX+˙Y=FX˙FY