Metamath Proof Explorer


Theorem mgpsumz

Description: If the group sum for the multiplicative group of a unital ring contains a summand/factor that is the zero of the ring, the group sum itself is zero. (Contributed by AV, 29-Dec-2018)

Ref Expression
Hypotheses mgpsumunsn.m M = mulGrp R
mgpsumunsn.t · ˙ = R
mgpsumunsn.r φ R CRing
mgpsumunsn.n φ N Fin
mgpsumunsn.i φ I N
mgpsumunsn.a φ k N A Base R
mgpsumz.z 0 ˙ = 0 R
mgpsumz.0 k = I A = 0 ˙
Assertion mgpsumz φ M k N A = 0 ˙

Proof

Step Hyp Ref Expression
1 mgpsumunsn.m M = mulGrp R
2 mgpsumunsn.t · ˙ = R
3 mgpsumunsn.r φ R CRing
4 mgpsumunsn.n φ N Fin
5 mgpsumunsn.i φ I N
6 mgpsumunsn.a φ k N A Base R
7 mgpsumz.z 0 ˙ = 0 R
8 mgpsumz.0 k = I A = 0 ˙
9 crngring R CRing R Ring
10 ringmnd R Ring R Mnd
11 9 10 syl R CRing R Mnd
12 3 11 syl φ R Mnd
13 eqid Base R = Base R
14 13 7 mndidcl R Mnd 0 ˙ Base R
15 12 14 syl φ 0 ˙ Base R
16 1 2 3 4 5 6 15 8 mgpsumunsn φ M k N A = M k N I A · ˙ 0 ˙
17 3 9 syl φ R Ring
18 1 13 mgpbas Base R = Base M
19 1 crngmgp R CRing M CMnd
20 3 19 syl φ M CMnd
21 diffi N Fin N I Fin
22 4 21 syl φ N I Fin
23 eldifi k N I k N
24 23 6 sylan2 φ k N I A Base R
25 24 ralrimiva φ k N I A Base R
26 18 20 22 25 gsummptcl φ M k N I A Base R
27 13 2 7 ringrz R Ring M k N I A Base R M k N I A · ˙ 0 ˙ = 0 ˙
28 17 26 27 syl2anc φ M k N I A · ˙ 0 ˙ = 0 ˙
29 16 28 eqtrd φ M k N A = 0 ˙