Metamath Proof Explorer


Theorem mgpsumz

Description: If the group sum for the multiplicative group of a unital ring contains a summand/factor that is the zero of the ring, the group sum itself is zero. (Contributed by AV, 29-Dec-2018)

Ref Expression
Hypotheses mgpsumunsn.m M = mulGrp R
mgpsumunsn.t · ˙ = R
mgpsumunsn.r φ R CRing
mgpsumunsn.n φ N Fin
mgpsumunsn.i φ I N
mgpsumunsn.a φ k N A Base R
mgpsumz.z 0 ˙ = 0 R
mgpsumz.0 k = I A = 0 ˙
Assertion mgpsumz φ M k N A = 0 ˙

Proof

Step Hyp Ref Expression
1 mgpsumunsn.m M = mulGrp R
2 mgpsumunsn.t · ˙ = R
3 mgpsumunsn.r φ R CRing
4 mgpsumunsn.n φ N Fin
5 mgpsumunsn.i φ I N
6 mgpsumunsn.a φ k N A Base R
7 mgpsumz.z 0 ˙ = 0 R
8 mgpsumz.0 k = I A = 0 ˙
9 crngring R CRing R Ring
10 ringmnd R Ring R Mnd
11 eqid Base R = Base R
12 11 7 mndidcl R Mnd 0 ˙ Base R
13 3 9 10 12 4syl φ 0 ˙ Base R
14 1 2 3 4 5 6 13 8 mgpsumunsn φ M k N A = M k N I A · ˙ 0 ˙
15 3 9 syl φ R Ring
16 1 11 mgpbas Base R = Base M
17 1 crngmgp R CRing M CMnd
18 3 17 syl φ M CMnd
19 diffi N Fin N I Fin
20 4 19 syl φ N I Fin
21 eldifi k N I k N
22 21 6 sylan2 φ k N I A Base R
23 22 ralrimiva φ k N I A Base R
24 16 18 20 23 gsummptcl φ M k N I A Base R
25 11 2 7 ringrz R Ring M k N I A Base R M k N I A · ˙ 0 ˙ = 0 ˙
26 15 24 25 syl2anc φ M k N I A · ˙ 0 ˙ = 0 ˙
27 14 26 eqtrd φ M k N A = 0 ˙