Metamath Proof Explorer


Theorem mhprcl

Description: Reverse closure for homogeneous polynomials, use elfvov1 and elfvov2 with reldmmhp for the reverse closure of I and R . (Contributed by SN, 4-Aug-2025)

Ref Expression
Hypotheses mhprcl.h H = I mHomP R
mhprcl.x φ X H N
Assertion mhprcl φ N 0

Proof

Step Hyp Ref Expression
1 mhprcl.h H = I mHomP R
2 mhprcl.x φ X H N
3 eqid I mPoly R = I mPoly R
4 eqid Base I mPoly R = Base I mPoly R
5 eqid 0 R = 0 R
6 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
7 reldmmhp Rel dom mHomP
8 7 1 2 elfvov1 φ I V
9 7 1 2 elfvov2 φ R V
10 1 3 4 5 6 8 9 mhpfval φ H = n 0 f Base I mPoly R | f supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = n
11 10 fveq1d φ H N = n 0 f Base I mPoly R | f supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = n N
12 2 11 eleqtrd φ X n 0 f Base I mPoly R | f supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = n N
13 eqid n 0 f Base I mPoly R | f supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = n = n 0 f Base I mPoly R | f supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = n
14 13 mptrcl X n 0 f Base I mPoly R | f supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = n N N 0
15 12 14 syl φ N 0