Metamath Proof Explorer


Theorem midid

Description: Midpoint of a null segment. (Contributed by Thierry Arnoux, 7-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
midcl.1 φAP
midcl.2 φBP
Assertion midid φAmid𝒢GA=A

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 midcl.1 φAP
7 midcl.2 φBP
8 1 2 3 4 5 6 6 midcl φAmid𝒢GAP
9 1 2 3 4 5 6 6 midbtwn φAmid𝒢GAAIA
10 1 2 3 4 6 8 9 axtgbtwnid φA=Amid𝒢GA
11 10 eqcomd φAmid𝒢GA=A