Metamath Proof Explorer


Theorem minmar1cl

Description: Closure of the row replacement function for square matrices: The matrix for a minor is a matrix. (Contributed by AV, 13-Feb-2019)

Ref Expression
Hypotheses minmar1cl.a A=NMatR
minmar1cl.b B=BaseA
Assertion minmar1cl RRingMBKNLNKNminMatR1RMLB

Proof

Step Hyp Ref Expression
1 minmar1cl.a A=NMatR
2 minmar1cl.b B=BaseA
3 eqid 1R=1R
4 1 2 3 minmar1marrep RRingMBNminMatR1RM=MNmatRRepR1R
5 4 adantr RRingMBKNLNNminMatR1RM=MNmatRRepR1R
6 5 oveqd RRingMBKNLNKNminMatR1RML=KMNmatRRepR1RL
7 simpl RRingMBRRing
8 simpr RRingMBMB
9 eqid BaseR=BaseR
10 9 3 ringidcl RRing1RBaseR
11 10 adantr RRingMB1RBaseR
12 7 8 11 3jca RRingMBRRingMB1RBaseR
13 1 2 marrepcl RRingMB1RBaseRKNLNKMNmatRRepR1RLB
14 12 13 sylan RRingMBKNLNKMNmatRRepR1RLB
15 6 14 eqeltrd RRingMBKNLNKNminMatR1RMLB