Metamath Proof Explorer


Theorem mins2

Description: The minimum of two surreals is less than or equal to the second. (Contributed by Scott Fenton, 14-Feb-2025)

Ref Expression
Assertion mins2 BNoifAsBABsB

Proof

Step Hyp Ref Expression
1 slerflex BNoBsB
2 iffalse ¬AsBifAsBAB=B
3 2 breq1d ¬AsBifAsBABsBBsB
4 1 3 syl5ibrcom BNo¬AsBifAsBABsB
5 iftrue AsBifAsBAB=A
6 id AsBAsB
7 5 6 eqbrtrd AsBifAsBABsB
8 4 7 pm2.61d2 BNoifAsBABsB