Metamath Proof Explorer


Theorem mircgrextend

Description: Link congruence over a pair of mirror points. cf tgcgrextend . (Contributed by Thierry Arnoux, 4-Oct-2020)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirtrcgr.e ˙=𝒢G
mirtrcgr.m M=SB
mirtrcgr.n N=SY
mirtrcgr.a φAP
mirtrcgr.b φBP
mirtrcgr.x φXP
mirtrcgr.y φYP
mircgrextend.1 φA-˙B=X-˙Y
Assertion mircgrextend φA-˙MA=X-˙NX

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirtrcgr.e ˙=𝒢G
8 mirtrcgr.m M=SB
9 mirtrcgr.n N=SY
10 mirtrcgr.a φAP
11 mirtrcgr.b φBP
12 mirtrcgr.x φXP
13 mirtrcgr.y φYP
14 mircgrextend.1 φA-˙B=X-˙Y
15 1 2 3 4 5 6 11 8 10 mircl φMAP
16 1 2 3 4 5 6 13 9 12 mircl φNXP
17 1 2 3 4 5 6 11 8 10 mirbtwn φBMAIA
18 1 2 3 6 15 11 10 17 tgbtwncom φBAIMA
19 1 2 3 4 5 6 13 9 12 mirbtwn φYNXIX
20 1 2 3 6 16 13 12 19 tgbtwncom φYXINX
21 1 2 3 6 10 11 12 13 14 tgcgrcomlr φB-˙A=Y-˙X
22 1 2 3 4 5 6 11 8 10 mircgr φB-˙MA=B-˙A
23 1 2 3 4 5 6 13 9 12 mircgr φY-˙NX=Y-˙X
24 21 22 23 3eqtr4d φB-˙MA=Y-˙NX
25 1 2 3 6 10 11 15 12 13 16 18 20 14 24 tgcgrextend φA-˙MA=X-˙NX