Description: Link congruence over a pair of mirror points. cf tgcgrextend . (Contributed by Thierry Arnoux, 4-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mirval.p | |
|
mirval.d | |
||
mirval.i | |
||
mirval.l | |
||
mirval.s | |
||
mirval.g | |
||
mirtrcgr.e | |
||
mirtrcgr.m | |
||
mirtrcgr.n | |
||
mirtrcgr.a | |
||
mirtrcgr.b | |
||
mirtrcgr.x | |
||
mirtrcgr.y | |
||
mircgrextend.1 | |
||
Assertion | mircgrextend | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | |
|
2 | mirval.d | |
|
3 | mirval.i | |
|
4 | mirval.l | |
|
5 | mirval.s | |
|
6 | mirval.g | |
|
7 | mirtrcgr.e | |
|
8 | mirtrcgr.m | |
|
9 | mirtrcgr.n | |
|
10 | mirtrcgr.a | |
|
11 | mirtrcgr.b | |
|
12 | mirtrcgr.x | |
|
13 | mirtrcgr.y | |
|
14 | mircgrextend.1 | |
|
15 | 1 2 3 4 5 6 11 8 10 | mircl | |
16 | 1 2 3 4 5 6 13 9 12 | mircl | |
17 | 1 2 3 4 5 6 11 8 10 | mirbtwn | |
18 | 1 2 3 6 15 11 10 17 | tgbtwncom | |
19 | 1 2 3 4 5 6 13 9 12 | mirbtwn | |
20 | 1 2 3 6 16 13 12 19 | tgbtwncom | |
21 | 1 2 3 6 10 11 12 13 14 | tgcgrcomlr | |
22 | 1 2 3 4 5 6 11 8 10 | mircgr | |
23 | 1 2 3 4 5 6 13 9 12 | mircgr | |
24 | 21 22 23 | 3eqtr4d | |
25 | 1 2 3 6 10 11 15 12 13 16 18 20 14 24 | tgcgrextend | |