Metamath Proof Explorer


Theorem mirconn

Description: Point inversion of connectedness. (Contributed by Thierry Arnoux, 2-Mar-2020)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirconn.m M=SA
mirconn.a φAP
mirconn.x φXP
mirconn.y φYP
mirconn.1 φXAIYYAIX
Assertion mirconn φAXIMY

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirconn.m M=SA
8 mirconn.a φAP
9 mirconn.x φXP
10 mirconn.y φYP
11 mirconn.1 φXAIYYAIX
12 6 adantr φXAIYG𝒢Tarski
13 9 adantr φXAIYXP
14 8 adantr φXAIYAP
15 1 2 3 4 5 6 8 7 10 mircl φMYP
16 15 adantr φXAIYMYP
17 10 adantr φXAIYYP
18 simpr φXAIYXAIY
19 1 2 3 4 5 6 8 7 10 mirbtwn φAMYIY
20 19 adantr φXAIYAMYIY
21 1 2 3 12 13 14 16 17 18 20 tgbtwnintr φXAIYAXIMY
22 1 2 3 6 9 8 tgbtwntriv2 φAXIA
23 22 adantr φY=AAXIA
24 simpr φY=AY=A
25 24 fveq2d φY=AMY=MA
26 1 2 3 4 5 6 8 7 mircinv φMA=A
27 26 adantr φY=AMA=A
28 25 27 eqtrd φY=AMY=A
29 28 oveq2d φY=AXIMY=XIA
30 23 29 eleqtrrd φY=AAXIMY
31 30 adantlr φYAIXY=AAXIMY
32 6 ad2antrr φYAIXYAG𝒢Tarski
33 9 ad2antrr φYAIXYAXP
34 10 ad2antrr φYAIXYAYP
35 8 ad2antrr φYAIXYAAP
36 15 ad2antrr φYAIXYAMYP
37 simpr φYAIXYAYA
38 simplr φYAIXYAYAIX
39 1 2 3 32 35 34 33 38 tgbtwncom φYAIXYAYXIA
40 1 2 3 6 15 8 10 19 tgbtwncom φAYIMY
41 40 ad2antrr φYAIXYAAYIMY
42 1 2 3 32 33 34 35 36 37 39 41 tgbtwnouttr2 φYAIXYAAXIMY
43 31 42 pm2.61dane φYAIXAXIMY
44 21 43 11 mpjaodan φAXIMY