Description: Point inversion of connectedness. (Contributed by Thierry Arnoux, 2-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mirval.p | |
|
mirval.d | |
||
mirval.i | |
||
mirval.l | |
||
mirval.s | |
||
mirval.g | |
||
mirconn.m | |
||
mirconn.a | |
||
mirconn.x | |
||
mirconn.y | |
||
mirconn.1 | |
||
Assertion | mirconn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | |
|
2 | mirval.d | |
|
3 | mirval.i | |
|
4 | mirval.l | |
|
5 | mirval.s | |
|
6 | mirval.g | |
|
7 | mirconn.m | |
|
8 | mirconn.a | |
|
9 | mirconn.x | |
|
10 | mirconn.y | |
|
11 | mirconn.1 | |
|
12 | 6 | adantr | |
13 | 9 | adantr | |
14 | 8 | adantr | |
15 | 1 2 3 4 5 6 8 7 10 | mircl | |
16 | 15 | adantr | |
17 | 10 | adantr | |
18 | simpr | |
|
19 | 1 2 3 4 5 6 8 7 10 | mirbtwn | |
20 | 19 | adantr | |
21 | 1 2 3 12 13 14 16 17 18 20 | tgbtwnintr | |
22 | 1 2 3 6 9 8 | tgbtwntriv2 | |
23 | 22 | adantr | |
24 | simpr | |
|
25 | 24 | fveq2d | |
26 | 1 2 3 4 5 6 8 7 | mircinv | |
27 | 26 | adantr | |
28 | 25 27 | eqtrd | |
29 | 28 | oveq2d | |
30 | 23 29 | eleqtrrd | |
31 | 30 | adantlr | |
32 | 6 | ad2antrr | |
33 | 9 | ad2antrr | |
34 | 10 | ad2antrr | |
35 | 8 | ad2antrr | |
36 | 15 | ad2antrr | |
37 | simpr | |
|
38 | simplr | |
|
39 | 1 2 3 32 35 34 33 38 | tgbtwncom | |
40 | 1 2 3 6 15 8 10 19 | tgbtwncom | |
41 | 40 | ad2antrr | |
42 | 1 2 3 32 33 34 35 36 37 39 41 | tgbtwnouttr2 | |
43 | 31 42 | pm2.61dane | |
44 | 21 43 11 | mpjaodan | |