| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|
| 2 |
|
mirval.d |
|
| 3 |
|
mirval.i |
|
| 4 |
|
mirval.l |
|
| 5 |
|
mirval.s |
|
| 6 |
|
mirval.g |
|
| 7 |
|
mirhl.m |
|
| 8 |
|
mirhl.k |
|
| 9 |
|
mirhl.a |
|
| 10 |
|
mirhl.x |
|
| 11 |
|
mirhl.y |
|
| 12 |
|
mirhl.z |
|
| 13 |
|
mirhl.1 |
|
| 14 |
6
|
adantr |
|
| 15 |
9
|
adantr |
|
| 16 |
10
|
adantr |
|
| 17 |
12
|
adantr |
|
| 18 |
|
simpr |
|
| 19 |
1 2 3 4 5 14 15 7 16 17 18
|
mireq |
|
| 20 |
1 3 8 10 11 12 6
|
ishlg |
|
| 21 |
13 20
|
mpbid |
|
| 22 |
21
|
simp1d |
|
| 23 |
22
|
adantr |
|
| 24 |
23
|
neneqd |
|
| 25 |
19 24
|
pm2.65da |
|
| 26 |
25
|
neqned |
|
| 27 |
6
|
adantr |
|
| 28 |
9
|
adantr |
|
| 29 |
11
|
adantr |
|
| 30 |
12
|
adantr |
|
| 31 |
|
simpr |
|
| 32 |
1 2 3 4 5 27 28 7 29 30 31
|
mireq |
|
| 33 |
21
|
simp2d |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
neneqd |
|
| 36 |
32 35
|
pm2.65da |
|
| 37 |
36
|
neqned |
|
| 38 |
21
|
simp3d |
|
| 39 |
6
|
adantr |
|
| 40 |
9
|
adantr |
|
| 41 |
12
|
adantr |
|
| 42 |
10
|
adantr |
|
| 43 |
11
|
adantr |
|
| 44 |
|
simpr |
|
| 45 |
1 2 3 4 5 39 40 7 41 42 43 44
|
mirbtwni |
|
| 46 |
45
|
ex |
|
| 47 |
6
|
adantr |
|
| 48 |
9
|
adantr |
|
| 49 |
12
|
adantr |
|
| 50 |
11
|
adantr |
|
| 51 |
10
|
adantr |
|
| 52 |
|
simpr |
|
| 53 |
1 2 3 4 5 47 48 7 49 50 51 52
|
mirbtwni |
|
| 54 |
53
|
ex |
|
| 55 |
46 54
|
orim12d |
|
| 56 |
38 55
|
mpd |
|
| 57 |
1 2 3 4 5 6 9 7 10
|
mircl |
|
| 58 |
1 2 3 4 5 6 9 7 11
|
mircl |
|
| 59 |
1 2 3 4 5 6 9 7 12
|
mircl |
|
| 60 |
1 3 8 57 58 59 6
|
ishlg |
|
| 61 |
26 37 56 60
|
mpbir3and |
|