Metamath Proof Explorer


Theorem mirhl

Description: If two points X and Y are on the same half-line from Z , the same applies to the mirror points. (Contributed by Thierry Arnoux, 21-Feb-2020)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirhl.m M=SA
mirhl.k K=hl𝒢G
mirhl.a φAP
mirhl.x φXP
mirhl.y φYP
mirhl.z φZP
mirhl.1 φXKZY
Assertion mirhl φMXKMZMY

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirhl.m M=SA
8 mirhl.k K=hl𝒢G
9 mirhl.a φAP
10 mirhl.x φXP
11 mirhl.y φYP
12 mirhl.z φZP
13 mirhl.1 φXKZY
14 6 adantr φMX=MZG𝒢Tarski
15 9 adantr φMX=MZAP
16 10 adantr φMX=MZXP
17 12 adantr φMX=MZZP
18 simpr φMX=MZMX=MZ
19 1 2 3 4 5 14 15 7 16 17 18 mireq φMX=MZX=Z
20 1 3 8 10 11 12 6 ishlg φXKZYXZYZXZIYYZIX
21 13 20 mpbid φXZYZXZIYYZIX
22 21 simp1d φXZ
23 22 adantr φMX=MZXZ
24 23 neneqd φMX=MZ¬X=Z
25 19 24 pm2.65da φ¬MX=MZ
26 25 neqned φMXMZ
27 6 adantr φMY=MZG𝒢Tarski
28 9 adantr φMY=MZAP
29 11 adantr φMY=MZYP
30 12 adantr φMY=MZZP
31 simpr φMY=MZMY=MZ
32 1 2 3 4 5 27 28 7 29 30 31 mireq φMY=MZY=Z
33 21 simp2d φYZ
34 33 adantr φMY=MZYZ
35 34 neneqd φMY=MZ¬Y=Z
36 32 35 pm2.65da φ¬MY=MZ
37 36 neqned φMYMZ
38 21 simp3d φXZIYYZIX
39 6 adantr φXZIYG𝒢Tarski
40 9 adantr φXZIYAP
41 12 adantr φXZIYZP
42 10 adantr φXZIYXP
43 11 adantr φXZIYYP
44 simpr φXZIYXZIY
45 1 2 3 4 5 39 40 7 41 42 43 44 mirbtwni φXZIYMXMZIMY
46 45 ex φXZIYMXMZIMY
47 6 adantr φYZIXG𝒢Tarski
48 9 adantr φYZIXAP
49 12 adantr φYZIXZP
50 11 adantr φYZIXYP
51 10 adantr φYZIXXP
52 simpr φYZIXYZIX
53 1 2 3 4 5 47 48 7 49 50 51 52 mirbtwni φYZIXMYMZIMX
54 53 ex φYZIXMYMZIMX
55 46 54 orim12d φXZIYYZIXMXMZIMYMYMZIMX
56 38 55 mpd φMXMZIMYMYMZIMX
57 1 2 3 4 5 6 9 7 10 mircl φMXP
58 1 2 3 4 5 6 9 7 11 mircl φMYP
59 1 2 3 4 5 6 9 7 12 mircl φMZP
60 1 3 8 57 58 59 6 ishlg φMXKMZMYMXMZMYMZMXMZIMYMYMZIMX
61 26 37 56 60 mpbir3and φMXKMZMY