Description: If two points X and Y are on the same half-line from Z , the same applies to the mirror points. (Contributed by Thierry Arnoux, 21-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mirval.p | |
|
mirval.d | |
||
mirval.i | |
||
mirval.l | |
||
mirval.s | |
||
mirval.g | |
||
mirhl.m | |
||
mirhl.k | |
||
mirhl.a | |
||
mirhl.x | |
||
mirhl.y | |
||
mirhl.z | |
||
mirhl.1 | |
||
Assertion | mirhl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | |
|
2 | mirval.d | |
|
3 | mirval.i | |
|
4 | mirval.l | |
|
5 | mirval.s | |
|
6 | mirval.g | |
|
7 | mirhl.m | |
|
8 | mirhl.k | |
|
9 | mirhl.a | |
|
10 | mirhl.x | |
|
11 | mirhl.y | |
|
12 | mirhl.z | |
|
13 | mirhl.1 | |
|
14 | 6 | adantr | |
15 | 9 | adantr | |
16 | 10 | adantr | |
17 | 12 | adantr | |
18 | simpr | |
|
19 | 1 2 3 4 5 14 15 7 16 17 18 | mireq | |
20 | 1 3 8 10 11 12 6 | ishlg | |
21 | 13 20 | mpbid | |
22 | 21 | simp1d | |
23 | 22 | adantr | |
24 | 23 | neneqd | |
25 | 19 24 | pm2.65da | |
26 | 25 | neqned | |
27 | 6 | adantr | |
28 | 9 | adantr | |
29 | 11 | adantr | |
30 | 12 | adantr | |
31 | simpr | |
|
32 | 1 2 3 4 5 27 28 7 29 30 31 | mireq | |
33 | 21 | simp2d | |
34 | 33 | adantr | |
35 | 34 | neneqd | |
36 | 32 35 | pm2.65da | |
37 | 36 | neqned | |
38 | 21 | simp3d | |
39 | 6 | adantr | |
40 | 9 | adantr | |
41 | 12 | adantr | |
42 | 10 | adantr | |
43 | 11 | adantr | |
44 | simpr | |
|
45 | 1 2 3 4 5 39 40 7 41 42 43 44 | mirbtwni | |
46 | 45 | ex | |
47 | 6 | adantr | |
48 | 9 | adantr | |
49 | 12 | adantr | |
50 | 11 | adantr | |
51 | 10 | adantr | |
52 | simpr | |
|
53 | 1 2 3 4 5 47 48 7 49 50 51 52 | mirbtwni | |
54 | 53 | ex | |
55 | 46 54 | orim12d | |
56 | 38 55 | mpd | |
57 | 1 2 3 4 5 6 9 7 10 | mircl | |
58 | 1 2 3 4 5 6 9 7 11 | mircl | |
59 | 1 2 3 4 5 6 9 7 12 | mircl | |
60 | 1 3 8 57 58 59 6 | ishlg | |
61 | 26 37 56 60 | mpbir3and | |