Metamath Proof Explorer


Theorem mnd4g

Description: Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses mndcl.b B=BaseG
mndcl.p +˙=+G
mnd4g.1 φGMnd
mnd4g.2 φXB
mnd4g.3 φYB
mnd4g.4 φZB
mnd4g.5 φWB
mnd4g.6 φY+˙Z=Z+˙Y
Assertion mnd4g φX+˙Y+˙Z+˙W=X+˙Z+˙Y+˙W

Proof

Step Hyp Ref Expression
1 mndcl.b B=BaseG
2 mndcl.p +˙=+G
3 mnd4g.1 φGMnd
4 mnd4g.2 φXB
5 mnd4g.3 φYB
6 mnd4g.4 φZB
7 mnd4g.5 φWB
8 mnd4g.6 φY+˙Z=Z+˙Y
9 1 2 3 5 6 7 8 mnd12g φY+˙Z+˙W=Z+˙Y+˙W
10 9 oveq2d φX+˙Y+˙Z+˙W=X+˙Z+˙Y+˙W
11 1 2 mndcl GMndZBWBZ+˙WB
12 3 6 7 11 syl3anc φZ+˙WB
13 1 2 mndass GMndXBYBZ+˙WBX+˙Y+˙Z+˙W=X+˙Y+˙Z+˙W
14 3 4 5 12 13 syl13anc φX+˙Y+˙Z+˙W=X+˙Y+˙Z+˙W
15 1 2 mndcl GMndYBWBY+˙WB
16 3 5 7 15 syl3anc φY+˙WB
17 1 2 mndass GMndXBZBY+˙WBX+˙Z+˙Y+˙W=X+˙Z+˙Y+˙W
18 3 4 6 16 17 syl13anc φX+˙Z+˙Y+˙W=X+˙Z+˙Y+˙W
19 10 14 18 3eqtr4d φX+˙Y+˙Z+˙W=X+˙Z+˙Y+˙W