Metamath Proof Explorer


Theorem mndfo

Description: The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013) (Proof shortened by AV, 23-Jan-2020)

Ref Expression
Hypotheses mndfo.b B=BaseG
mndfo.p +˙=+G
Assertion mndfo GMnd+˙FnB×B+˙:B×BontoB

Proof

Step Hyp Ref Expression
1 mndfo.b B=BaseG
2 mndfo.p +˙=+G
3 eqid +𝑓G=+𝑓G
4 1 3 mndpfo GMnd+𝑓G:B×BontoB
5 4 adantr GMnd+˙FnB×B+𝑓G:B×BontoB
6 1 2 3 plusfeq +˙FnB×B+𝑓G=+˙
7 6 eqcomd +˙FnB×B+˙=+𝑓G
8 7 adantl GMnd+˙FnB×B+˙=+𝑓G
9 foeq1 +˙=+𝑓G+˙:B×BontoB+𝑓G:B×BontoB
10 8 9 syl GMnd+˙FnB×B+˙:B×BontoB+𝑓G:B×BontoB
11 5 10 mpbird GMnd+˙FnB×B+˙:B×BontoB