Metamath Proof Explorer


Theorem mndtcob

Description: Lemma for mndtchom and mndtcco . (Contributed by Zhi Wang, 22-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses mndtcbas.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtcbas.m φMMnd
mndtcbas.b φB=BaseC
mndtchom.x φXB
Assertion mndtcob φX=M

Proof

Step Hyp Ref Expression
1 mndtcbas.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtcbas.m φMMnd
3 mndtcbas.b φB=BaseC
4 mndtchom.x φXB
5 1 2 3 mndtcbasval φB=M
6 4 5 eleqtrd φXM
7 elsng XBXMX=M
8 4 7 syl φXMX=M
9 6 8 mpbid φX=M