Metamath Proof Explorer
		
		
		
		Description:  Lemma for mndtchom and mndtcco .  (Contributed by Zhi Wang, 22-Sep-2024)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mndtcbas.c |  | 
					
						|  |  | mndtcbas.m |  | 
					
						|  |  | mndtcbas.b |  | 
					
						|  |  | mndtchom.x |  | 
				
					|  | Assertion | mndtcob |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndtcbas.c |  | 
						
							| 2 |  | mndtcbas.m |  | 
						
							| 3 |  | mndtcbas.b |  | 
						
							| 4 |  | mndtchom.x |  | 
						
							| 5 | 1 2 3 | mndtcbasval |  | 
						
							| 6 | 4 5 | eleqtrd |  | 
						
							| 7 |  | elsng |  | 
						
							| 8 | 4 7 | syl |  | 
						
							| 9 | 6 8 | mpbid |  |