Metamath Proof Explorer


Theorem mnringscad

Description: The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (Proof shortened by AV, 1-Nov-2024)

Ref Expression
Hypotheses mnringscad.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringscad.2 φRU
mnringscad.3 φMW
Assertion mnringscad φR=ScalarF

Proof

Step Hyp Ref Expression
1 mnringscad.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringscad.2 φRU
3 mnringscad.3 φMW
4 fvex BaseMV
5 eqid RfreeLModBaseM=RfreeLModBaseM
6 5 frlmsca RUBaseMVR=ScalarRfreeLModBaseM
7 2 4 6 sylancl φR=ScalarRfreeLModBaseM
8 scaid Scalar=SlotScalarndx
9 scandxnmulrndx Scalarndxndx
10 eqid BaseM=BaseM
11 1 8 9 10 5 2 3 mnringnmulrd φScalarRfreeLModBaseM=ScalarF
12 7 11 eqtrd φR=ScalarF