Metamath Proof Explorer


Theorem mnuop3d

Description: Third operation of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuop3d.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnuop3d.2 φUM
mnuop3d.3 φAU
mnuop3d.4 φFU
Assertion mnuop3d φwUiAvFivuFiuuw

Proof

Step Hyp Ref Expression
1 mnuop3d.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnuop3d.2 φUM
3 mnuop3d.3 φAU
4 mnuop3d.4 φFU
5 2 4 sselpwd φF𝒫U
6 1 2 3 5 mnuop23d φwU𝒫AwiAvUivvFuFiuuw
7 4 sseld φvFvU
8 7 adantrd φvFivvU
9 pm3.22 vFivivvF
10 8 9 jca2 φvFivvUivvF
11 10 reximdv2 φvFivvUivvF
12 11 imim1d φvUivvFuFiuuwvFivuFiuuw
13 12 ralimdv φiAvUivvFuFiuuwiAvFivuFiuuw
14 13 adantld φ𝒫AwiAvUivvFuFiuuwiAvFivuFiuuw
15 14 reximdv φwU𝒫AwiAvUivvFuFiuuwwUiAvFivuFiuuw
16 6 15 mpd φwUiAvFivuFiuuw