Metamath Proof Explorer


Theorem modaddb

Description: Addition property of the modulo operation. Biconditional version of modadd1 by applying modadd1 twice. (Contributed by AV, 14-Nov-2025)

Ref Expression
Assertion modaddb A B C D + A mod D = B mod D A + C mod D = B + C mod D

Proof

Step Hyp Ref Expression
1 modadd1 A B C D + A mod D = B mod D A + C mod D = B + C mod D
2 1 3expa A B C D + A mod D = B mod D A + C mod D = B + C mod D
3 simpll A B C D + A
4 simprl A B C D + C
5 3 4 readdcld A B C D + A + C
6 simplr A B C D + B
7 6 4 readdcld A B C D + B + C
8 5 7 jca A B C D + A + C B + C
9 8 adantr A B C D + A + C mod D = B + C mod D A + C B + C
10 renegcl C C
11 10 anim1i C D + C D +
12 11 adantl A B C D + C D +
13 12 adantr A B C D + A + C mod D = B + C mod D C D +
14 simpr A B C D + A + C mod D = B + C mod D A + C mod D = B + C mod D
15 modadd1 A + C B + C C D + A + C mod D = B + C mod D A + C + C mod D = B + C + C mod D
16 9 13 14 15 syl3anc A B C D + A + C mod D = B + C mod D A + C + C mod D = B + C + C mod D
17 simpl A B A
18 17 recnd A B A
19 18 adantr A B C D + A
20 simpl C D + C
21 20 recnd C D + C
22 21 adantl A B C D + C
23 19 22 addcld A B C D + A + C
24 23 22 negsubd A B C D + A + C + C = A + C - C
25 19 22 pncand A B C D + A + C - C = A
26 24 25 eqtr2d A B C D + A = A + C + C
27 26 oveq1d A B C D + A mod D = A + C + C mod D
28 simpr A B B
29 28 recnd A B B
30 29 adantr A B C D + B
31 30 22 addcld A B C D + B + C
32 31 22 negsubd A B C D + B + C + C = B + C - C
33 30 22 pncand A B C D + B + C - C = B
34 32 33 eqtr2d A B C D + B = B + C + C
35 34 oveq1d A B C D + B mod D = B + C + C mod D
36 27 35 eqeq12d A B C D + A mod D = B mod D A + C + C mod D = B + C + C mod D
37 36 adantr A B C D + A + C mod D = B + C mod D A mod D = B mod D A + C + C mod D = B + C + C mod D
38 16 37 mpbird A B C D + A + C mod D = B + C mod D A mod D = B mod D
39 2 38 impbida A B C D + A mod D = B mod D A + C mod D = B + C mod D