Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismon.b | |
|
ismon.h | |
||
ismon.o | |
||
ismon.s | |
||
ismon.c | |
||
Assertion | monfval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismon.b | |
|
2 | ismon.h | |
|
3 | ismon.o | |
|
4 | ismon.s | |
|
5 | ismon.c | |
|
6 | fvexd | |
|
7 | fveq2 | |
|
8 | 7 1 | eqtr4di | |
9 | fvexd | |
|
10 | simpl | |
|
11 | 10 | fveq2d | |
12 | 11 2 | eqtr4di | |
13 | simplr | |
|
14 | simpr | |
|
15 | 14 | oveqd | |
16 | 14 | oveqd | |
17 | simpll | |
|
18 | 17 | fveq2d | |
19 | 18 3 | eqtr4di | |
20 | 19 | oveqd | |
21 | 20 | oveqd | |
22 | 16 21 | mpteq12dv | |
23 | 22 | cnveqd | |
24 | 23 | funeqd | |
25 | 13 24 | raleqbidv | |
26 | 15 25 | rabeqbidv | |
27 | 13 13 26 | mpoeq123dv | |
28 | 9 12 27 | csbied2 | |
29 | 6 8 28 | csbied2 | |
30 | df-mon | |
|
31 | 1 | fvexi | |
32 | 31 31 | mpoex | |
33 | 29 30 32 | fvmpt | |
34 | 5 33 | syl | |
35 | 4 34 | eqtrid | |