Metamath Proof Explorer


Theorem monfval

Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses ismon.b B=BaseC
ismon.h H=HomC
ismon.o ·˙=compC
ismon.s M=MonoC
ismon.c φCCat
Assertion monfval φM=xB,yBfxHy|zBFungzHxfzx·˙yg-1

Proof

Step Hyp Ref Expression
1 ismon.b B=BaseC
2 ismon.h H=HomC
3 ismon.o ·˙=compC
4 ismon.s M=MonoC
5 ismon.c φCCat
6 fvexd c=CBasecV
7 fveq2 c=CBasec=BaseC
8 7 1 eqtr4di c=CBasec=B
9 fvexd c=Cb=BHomcV
10 simpl c=Cb=Bc=C
11 10 fveq2d c=Cb=BHomc=HomC
12 11 2 eqtr4di c=Cb=BHomc=H
13 simplr c=Cb=Bh=Hb=B
14 simpr c=Cb=Bh=Hh=H
15 14 oveqd c=Cb=Bh=Hxhy=xHy
16 14 oveqd c=Cb=Bh=Hzhx=zHx
17 simpll c=Cb=Bh=Hc=C
18 17 fveq2d c=Cb=Bh=Hcompc=compC
19 18 3 eqtr4di c=Cb=Bh=Hcompc=·˙
20 19 oveqd c=Cb=Bh=Hzxcompcy=zx·˙y
21 20 oveqd c=Cb=Bh=Hfzxcompcyg=fzx·˙yg
22 16 21 mpteq12dv c=Cb=Bh=Hgzhxfzxcompcyg=gzHxfzx·˙yg
23 22 cnveqd c=Cb=Bh=Hgzhxfzxcompcyg-1=gzHxfzx·˙yg-1
24 23 funeqd c=Cb=Bh=HFungzhxfzxcompcyg-1FungzHxfzx·˙yg-1
25 13 24 raleqbidv c=Cb=Bh=HzbFungzhxfzxcompcyg-1zBFungzHxfzx·˙yg-1
26 15 25 rabeqbidv c=Cb=Bh=Hfxhy|zbFungzhxfzxcompcyg-1=fxHy|zBFungzHxfzx·˙yg-1
27 13 13 26 mpoeq123dv c=Cb=Bh=Hxb,ybfxhy|zbFungzhxfzxcompcyg-1=xB,yBfxHy|zBFungzHxfzx·˙yg-1
28 9 12 27 csbied2 c=Cb=BHomc/hxb,ybfxhy|zbFungzhxfzxcompcyg-1=xB,yBfxHy|zBFungzHxfzx·˙yg-1
29 6 8 28 csbied2 c=CBasec/bHomc/hxb,ybfxhy|zbFungzhxfzxcompcyg-1=xB,yBfxHy|zBFungzHxfzx·˙yg-1
30 df-mon Mono=cCatBasec/bHomc/hxb,ybfxhy|zbFungzhxfzxcompcyg-1
31 1 fvexi BV
32 31 31 mpoex xB,yBfxHy|zBFungzHxfzx·˙yg-1V
33 29 30 32 fvmpt CCatMonoC=xB,yBfxHy|zBFungzHxfzx·˙yg-1
34 5 33 syl φMonoC=xB,yBfxHy|zBFungzHxfzx·˙yg-1
35 4 34 eqtrid φM=xB,yBfxHy|zBFungzHxfzx·˙yg-1