Metamath Proof Explorer


Theorem motcgr

Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P=BaseG
ismot.m -˙=distG
motgrp.1 φGV
motcgr.a φAP
motcgr.b φBP
motcgr.f φFGIsmtG
Assertion motcgr φFA-˙FB=A-˙B

Proof

Step Hyp Ref Expression
1 ismot.p P=BaseG
2 ismot.m -˙=distG
3 motgrp.1 φGV
4 motcgr.a φAP
5 motcgr.b φBP
6 motcgr.f φFGIsmtG
7 1 2 ismot GVFGIsmtGF:P1-1 ontoPaPbPFa-˙Fb=a-˙b
8 3 7 syl φFGIsmtGF:P1-1 ontoPaPbPFa-˙Fb=a-˙b
9 6 8 mpbid φF:P1-1 ontoPaPbPFa-˙Fb=a-˙b
10 9 simprd φaPbPFa-˙Fb=a-˙b
11 fveq2 a=AFa=FA
12 11 oveq1d a=AFa-˙Fb=FA-˙Fb
13 oveq1 a=Aa-˙b=A-˙b
14 12 13 eqeq12d a=AFa-˙Fb=a-˙bFA-˙Fb=A-˙b
15 fveq2 b=BFb=FB
16 15 oveq2d b=BFA-˙Fb=FA-˙FB
17 oveq2 b=BA-˙b=A-˙B
18 16 17 eqeq12d b=BFA-˙Fb=A-˙bFA-˙FB=A-˙B
19 14 18 rspc2va APBPaPbPFa-˙Fb=a-˙bFA-˙FB=A-˙B
20 4 5 10 19 syl21anc φFA-˙FB=A-˙B