Metamath Proof Explorer


Theorem motplusg

Description: The operation for motions is their composition. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P=BaseG
ismot.m -˙=distG
motgrp.1 φGV
motgrp.i I=BasendxGIsmtG+ndxfGIsmtG,gGIsmtGfg
motplusg.1 φFGIsmtG
motplusg.2 φHGIsmtG
Assertion motplusg φF+IH=FH

Proof

Step Hyp Ref Expression
1 ismot.p P=BaseG
2 ismot.m -˙=distG
3 motgrp.1 φGV
4 motgrp.i I=BasendxGIsmtG+ndxfGIsmtG,gGIsmtGfg
5 motplusg.1 φFGIsmtG
6 motplusg.2 φHGIsmtG
7 coexg FGIsmtGHGIsmtGFHV
8 5 6 7 syl2anc φFHV
9 coeq1 a=Fab=Fb
10 coeq2 b=HFb=FH
11 ovex GIsmtGV
12 11 11 mpoex fGIsmtG,gGIsmtGfgV
13 4 grpplusg fGIsmtG,gGIsmtGfgVfGIsmtG,gGIsmtGfg=+I
14 12 13 ax-mp fGIsmtG,gGIsmtGfg=+I
15 coeq1 f=afg=ag
16 coeq2 g=bag=ab
17 15 16 cbvmpov fGIsmtG,gGIsmtGfg=aGIsmtG,bGIsmtGab
18 14 17 eqtr3i +I=aGIsmtG,bGIsmtGab
19 9 10 18 ovmpog FGIsmtGHGIsmtGFHVF+IH=FH
20 5 6 8 19 syl3anc φF+IH=FH