Metamath Proof Explorer


Theorem motplusg

Description: The operation for motions is their composition. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p 𝑃 = ( Base ‘ 𝐺 )
ismot.m = ( dist ‘ 𝐺 )
motgrp.1 ( 𝜑𝐺𝑉 )
motgrp.i 𝐼 = { ⟨ ( Base ‘ ndx ) , ( 𝐺 Ismt 𝐺 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓𝑔 ) ) ⟩ }
motplusg.1 ( 𝜑𝐹 ∈ ( 𝐺 Ismt 𝐺 ) )
motplusg.2 ( 𝜑𝐻 ∈ ( 𝐺 Ismt 𝐺 ) )
Assertion motplusg ( 𝜑 → ( 𝐹 ( +g𝐼 ) 𝐻 ) = ( 𝐹𝐻 ) )

Proof

Step Hyp Ref Expression
1 ismot.p 𝑃 = ( Base ‘ 𝐺 )
2 ismot.m = ( dist ‘ 𝐺 )
3 motgrp.1 ( 𝜑𝐺𝑉 )
4 motgrp.i 𝐼 = { ⟨ ( Base ‘ ndx ) , ( 𝐺 Ismt 𝐺 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓𝑔 ) ) ⟩ }
5 motplusg.1 ( 𝜑𝐹 ∈ ( 𝐺 Ismt 𝐺 ) )
6 motplusg.2 ( 𝜑𝐻 ∈ ( 𝐺 Ismt 𝐺 ) )
7 coexg ( ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝐻 ∈ ( 𝐺 Ismt 𝐺 ) ) → ( 𝐹𝐻 ) ∈ V )
8 5 6 7 syl2anc ( 𝜑 → ( 𝐹𝐻 ) ∈ V )
9 coeq1 ( 𝑎 = 𝐹 → ( 𝑎𝑏 ) = ( 𝐹𝑏 ) )
10 coeq2 ( 𝑏 = 𝐻 → ( 𝐹𝑏 ) = ( 𝐹𝐻 ) )
11 ovex ( 𝐺 Ismt 𝐺 ) ∈ V
12 11 11 mpoex ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓𝑔 ) ) ∈ V
13 4 grpplusg ( ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓𝑔 ) ) ∈ V → ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓𝑔 ) ) = ( +g𝐼 ) )
14 12 13 ax-mp ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓𝑔 ) ) = ( +g𝐼 )
15 coeq1 ( 𝑓 = 𝑎 → ( 𝑓𝑔 ) = ( 𝑎𝑔 ) )
16 coeq2 ( 𝑔 = 𝑏 → ( 𝑎𝑔 ) = ( 𝑎𝑏 ) )
17 15 16 cbvmpov ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓𝑔 ) ) = ( 𝑎 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑏 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑎𝑏 ) )
18 14 17 eqtr3i ( +g𝐼 ) = ( 𝑎 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑏 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑎𝑏 ) )
19 9 10 18 ovmpog ( ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝐻 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ( 𝐹𝐻 ) ∈ V ) → ( 𝐹 ( +g𝐼 ) 𝐻 ) = ( 𝐹𝐻 ) )
20 5 6 8 19 syl3anc ( 𝜑 → ( 𝐹 ( +g𝐼 ) 𝐻 ) = ( 𝐹𝐻 ) )