| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismot.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ismot.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | motgrp.1 | ⊢ ( 𝜑  →  𝐺  ∈  𝑉 ) | 
						
							| 4 |  | motgrp.i | ⊢ 𝐼  =  { 〈 ( Base ‘ ndx ) ,  ( 𝐺 Ismt 𝐺 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 ) ,  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 } | 
						
							| 5 |  | ovex | ⊢ ( 𝐺 Ismt 𝐺 )  ∈  V | 
						
							| 6 | 4 | grpbase | ⊢ ( ( 𝐺 Ismt 𝐺 )  ∈  V  →  ( 𝐺 Ismt 𝐺 )  =  ( Base ‘ 𝐼 ) ) | 
						
							| 7 | 5 6 | mp1i | ⊢ ( 𝜑  →  ( 𝐺 Ismt 𝐺 )  =  ( Base ‘ 𝐼 ) ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝜑  →  ( +g ‘ 𝐼 )  =  ( +g ‘ 𝐼 ) ) | 
						
							| 9 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 ) )  →  𝐺  ∈  𝑉 ) | 
						
							| 10 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 ) )  →  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 11 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 ) )  →  𝑔  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 12 | 1 2 9 4 10 11 | motplusg | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 ) )  →  ( 𝑓 ( +g ‘ 𝐼 ) 𝑔 )  =  ( 𝑓  ∘  𝑔 ) ) | 
						
							| 13 | 1 2 9 10 11 | motco | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 ) )  →  ( 𝑓  ∘  𝑔 )  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 14 | 12 13 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 ) )  →  ( 𝑓 ( +g ‘ 𝐼 ) 𝑔 )  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 15 |  | coass | ⊢ ( ( 𝑓  ∘  𝑔 )  ∘  ℎ )  =  ( 𝑓  ∘  ( 𝑔  ∘  ℎ ) ) | 
						
							| 16 | 12 | 3adant3r3 | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  ( 𝑓 ( +g ‘ 𝐼 ) 𝑔 )  =  ( 𝑓  ∘  𝑔 ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  ( ( 𝑓 ( +g ‘ 𝐼 ) 𝑔 ) ( +g ‘ 𝐼 ) ℎ )  =  ( ( 𝑓  ∘  𝑔 ) ( +g ‘ 𝐼 ) ℎ ) ) | 
						
							| 18 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  𝐺  ∈  𝑉 ) | 
						
							| 19 | 13 | 3adant3r3 | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  ( 𝑓  ∘  𝑔 )  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 20 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 21 | 1 2 18 4 19 20 | motplusg | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  ( ( 𝑓  ∘  𝑔 ) ( +g ‘ 𝐼 ) ℎ )  =  ( ( 𝑓  ∘  𝑔 )  ∘  ℎ ) ) | 
						
							| 22 | 17 21 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  ( ( 𝑓 ( +g ‘ 𝐼 ) 𝑔 ) ( +g ‘ 𝐼 ) ℎ )  =  ( ( 𝑓  ∘  𝑔 )  ∘  ℎ ) ) | 
						
							| 23 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  𝑔  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 24 | 1 2 18 4 23 20 | motplusg | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  ( 𝑔 ( +g ‘ 𝐼 ) ℎ )  =  ( 𝑔  ∘  ℎ ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  ( 𝑓 ( +g ‘ 𝐼 ) ( 𝑔 ( +g ‘ 𝐼 ) ℎ ) )  =  ( 𝑓 ( +g ‘ 𝐼 ) ( 𝑔  ∘  ℎ ) ) ) | 
						
							| 26 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 27 | 1 2 18 23 20 | motco | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  ( 𝑔  ∘  ℎ )  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 28 | 1 2 18 4 26 27 | motplusg | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  ( 𝑓 ( +g ‘ 𝐼 ) ( 𝑔  ∘  ℎ ) )  =  ( 𝑓  ∘  ( 𝑔  ∘  ℎ ) ) ) | 
						
							| 29 | 25 28 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  ( 𝑓 ( +g ‘ 𝐼 ) ( 𝑔 ( +g ‘ 𝐼 ) ℎ ) )  =  ( 𝑓  ∘  ( 𝑔  ∘  ℎ ) ) ) | 
						
							| 30 | 15 22 29 | 3eqtr4a | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ∧  𝑔  ∈  ( 𝐺 Ismt 𝐺 )  ∧  ℎ  ∈  ( 𝐺 Ismt 𝐺 ) ) )  →  ( ( 𝑓 ( +g ‘ 𝐼 ) 𝑔 ) ( +g ‘ 𝐼 ) ℎ )  =  ( 𝑓 ( +g ‘ 𝐼 ) ( 𝑔 ( +g ‘ 𝐼 ) ℎ ) ) ) | 
						
							| 31 | 1 2 3 | idmot | ⊢ ( 𝜑  →  (  I   ↾  𝑃 )  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 32 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) )  →  𝐺  ∈  𝑉 ) | 
						
							| 33 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) )  →  (  I   ↾  𝑃 )  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) )  →  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 35 | 1 2 32 4 33 34 | motplusg | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) )  →  ( (  I   ↾  𝑃 ) ( +g ‘ 𝐼 ) 𝑓 )  =  ( (  I   ↾  𝑃 )  ∘  𝑓 ) ) | 
						
							| 36 | 1 2 | ismot | ⊢ ( 𝐺  ∈  𝑉  →  ( 𝑓  ∈  ( 𝐺 Ismt 𝐺 )  ↔  ( 𝑓 : 𝑃 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( ( 𝑓 ‘ 𝑎 )  −  ( 𝑓 ‘ 𝑏 ) )  =  ( 𝑎  −  𝑏 ) ) ) ) | 
						
							| 37 | 36 | simprbda | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) )  →  𝑓 : 𝑃 –1-1-onto→ 𝑃 ) | 
						
							| 38 | 3 37 | sylan | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) )  →  𝑓 : 𝑃 –1-1-onto→ 𝑃 ) | 
						
							| 39 |  | f1of | ⊢ ( 𝑓 : 𝑃 –1-1-onto→ 𝑃  →  𝑓 : 𝑃 ⟶ 𝑃 ) | 
						
							| 40 |  | fcoi2 | ⊢ ( 𝑓 : 𝑃 ⟶ 𝑃  →  ( (  I   ↾  𝑃 )  ∘  𝑓 )  =  𝑓 ) | 
						
							| 41 | 38 39 40 | 3syl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) )  →  ( (  I   ↾  𝑃 )  ∘  𝑓 )  =  𝑓 ) | 
						
							| 42 | 35 41 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) )  →  ( (  I   ↾  𝑃 ) ( +g ‘ 𝐼 ) 𝑓 )  =  𝑓 ) | 
						
							| 43 | 1 2 32 34 | cnvmot | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) )  →  ◡ 𝑓  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 44 | 1 2 32 4 43 34 | motplusg | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) )  →  ( ◡ 𝑓 ( +g ‘ 𝐼 ) 𝑓 )  =  ( ◡ 𝑓  ∘  𝑓 ) ) | 
						
							| 45 |  | f1ococnv1 | ⊢ ( 𝑓 : 𝑃 –1-1-onto→ 𝑃  →  ( ◡ 𝑓  ∘  𝑓 )  =  (  I   ↾  𝑃 ) ) | 
						
							| 46 | 38 45 | syl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) )  →  ( ◡ 𝑓  ∘  𝑓 )  =  (  I   ↾  𝑃 ) ) | 
						
							| 47 | 44 46 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝐺 Ismt 𝐺 ) )  →  ( ◡ 𝑓 ( +g ‘ 𝐼 ) 𝑓 )  =  (  I   ↾  𝑃 ) ) | 
						
							| 48 | 7 8 14 30 31 42 43 47 | isgrpd | ⊢ ( 𝜑  →  𝐼  ∈  Grp ) |