| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismot.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ismot.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | motgrp.1 | ⊢ ( 𝜑  →  𝐺  ∈  𝑉 ) | 
						
							| 4 |  | motco.2 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 5 |  | motco.3 | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 6 | 1 2 3 4 | motf1o | ⊢ ( 𝜑  →  𝐹 : 𝑃 –1-1-onto→ 𝑃 ) | 
						
							| 7 | 1 2 3 5 | motf1o | ⊢ ( 𝜑  →  𝐻 : 𝑃 –1-1-onto→ 𝑃 ) | 
						
							| 8 |  | f1oco | ⊢ ( ( 𝐹 : 𝑃 –1-1-onto→ 𝑃  ∧  𝐻 : 𝑃 –1-1-onto→ 𝑃 )  →  ( 𝐹  ∘  𝐻 ) : 𝑃 –1-1-onto→ 𝑃 ) | 
						
							| 9 | 6 7 8 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐻 ) : 𝑃 –1-1-onto→ 𝑃 ) | 
						
							| 10 |  | f1of | ⊢ ( 𝐻 : 𝑃 –1-1-onto→ 𝑃  →  𝐻 : 𝑃 ⟶ 𝑃 ) | 
						
							| 11 | 7 10 | syl | ⊢ ( 𝜑  →  𝐻 : 𝑃 ⟶ 𝑃 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  𝐻 : 𝑃 ⟶ 𝑃 ) | 
						
							| 13 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  𝑎  ∈  𝑃 ) | 
						
							| 14 |  | fvco3 | ⊢ ( ( 𝐻 : 𝑃 ⟶ 𝑃  ∧  𝑎  ∈  𝑃 )  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝐻 ‘ 𝑎 ) ) ) | 
						
							| 15 | 12 13 14 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝐻 ‘ 𝑎 ) ) ) | 
						
							| 16 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  𝑏  ∈  𝑃 ) | 
						
							| 17 |  | fvco3 | ⊢ ( ( 𝐻 : 𝑃 ⟶ 𝑃  ∧  𝑏  ∈  𝑃 )  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑏 )  =  ( 𝐹 ‘ ( 𝐻 ‘ 𝑏 ) ) ) | 
						
							| 18 | 12 16 17 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑏 )  =  ( 𝐹 ‘ ( 𝐻 ‘ 𝑏 ) ) ) | 
						
							| 19 | 15 18 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( ( ( 𝐹  ∘  𝐻 ) ‘ 𝑎 )  −  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑏 ) )  =  ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑎 ) )  −  ( 𝐹 ‘ ( 𝐻 ‘ 𝑏 ) ) ) ) | 
						
							| 20 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  𝐺  ∈  𝑉 ) | 
						
							| 21 | 12 13 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( 𝐻 ‘ 𝑎 )  ∈  𝑃 ) | 
						
							| 22 | 12 16 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( 𝐻 ‘ 𝑏 )  ∈  𝑃 ) | 
						
							| 23 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  𝐹  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 24 | 1 2 20 21 22 23 | motcgr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑎 ) )  −  ( 𝐹 ‘ ( 𝐻 ‘ 𝑏 ) ) )  =  ( ( 𝐻 ‘ 𝑎 )  −  ( 𝐻 ‘ 𝑏 ) ) ) | 
						
							| 25 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  𝐻  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 26 | 1 2 20 13 16 25 | motcgr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( ( 𝐻 ‘ 𝑎 )  −  ( 𝐻 ‘ 𝑏 ) )  =  ( 𝑎  −  𝑏 ) ) | 
						
							| 27 | 19 24 26 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( ( ( 𝐹  ∘  𝐻 ) ‘ 𝑎 )  −  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑏 ) )  =  ( 𝑎  −  𝑏 ) ) | 
						
							| 28 | 27 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( ( ( 𝐹  ∘  𝐻 ) ‘ 𝑎 )  −  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑏 ) )  =  ( 𝑎  −  𝑏 ) ) | 
						
							| 29 | 1 2 | ismot | ⊢ ( 𝐺  ∈  𝑉  →  ( ( 𝐹  ∘  𝐻 )  ∈  ( 𝐺 Ismt 𝐺 )  ↔  ( ( 𝐹  ∘  𝐻 ) : 𝑃 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( ( ( 𝐹  ∘  𝐻 ) ‘ 𝑎 )  −  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑏 ) )  =  ( 𝑎  −  𝑏 ) ) ) ) | 
						
							| 30 | 3 29 | syl | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐻 )  ∈  ( 𝐺 Ismt 𝐺 )  ↔  ( ( 𝐹  ∘  𝐻 ) : 𝑃 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( ( ( 𝐹  ∘  𝐻 ) ‘ 𝑎 )  −  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑏 ) )  =  ( 𝑎  −  𝑏 ) ) ) ) | 
						
							| 31 | 9 28 30 | mpbir2and | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐻 )  ∈  ( 𝐺 Ismt 𝐺 ) ) |