Metamath Proof Explorer


Theorem motco

Description: The composition of two motions is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P = Base G
ismot.m - ˙ = dist G
motgrp.1 φ G V
motco.2 φ F G Ismt G
motco.3 φ H G Ismt G
Assertion motco φ F H G Ismt G

Proof

Step Hyp Ref Expression
1 ismot.p P = Base G
2 ismot.m - ˙ = dist G
3 motgrp.1 φ G V
4 motco.2 φ F G Ismt G
5 motco.3 φ H G Ismt G
6 1 2 3 4 motf1o φ F : P 1-1 onto P
7 1 2 3 5 motf1o φ H : P 1-1 onto P
8 f1oco F : P 1-1 onto P H : P 1-1 onto P F H : P 1-1 onto P
9 6 7 8 syl2anc φ F H : P 1-1 onto P
10 f1of H : P 1-1 onto P H : P P
11 7 10 syl φ H : P P
12 11 adantr φ a P b P H : P P
13 simprl φ a P b P a P
14 fvco3 H : P P a P F H a = F H a
15 12 13 14 syl2anc φ a P b P F H a = F H a
16 simprr φ a P b P b P
17 fvco3 H : P P b P F H b = F H b
18 12 16 17 syl2anc φ a P b P F H b = F H b
19 15 18 oveq12d φ a P b P F H a - ˙ F H b = F H a - ˙ F H b
20 3 adantr φ a P b P G V
21 12 13 ffvelrnd φ a P b P H a P
22 12 16 ffvelrnd φ a P b P H b P
23 4 adantr φ a P b P F G Ismt G
24 1 2 20 21 22 23 motcgr φ a P b P F H a - ˙ F H b = H a - ˙ H b
25 5 adantr φ a P b P H G Ismt G
26 1 2 20 13 16 25 motcgr φ a P b P H a - ˙ H b = a - ˙ b
27 19 24 26 3eqtrd φ a P b P F H a - ˙ F H b = a - ˙ b
28 27 ralrimivva φ a P b P F H a - ˙ F H b = a - ˙ b
29 1 2 ismot G V F H G Ismt G F H : P 1-1 onto P a P b P F H a - ˙ F H b = a - ˙ b
30 3 29 syl φ F H G Ismt G F H : P 1-1 onto P a P b P F H a - ˙ F H b = a - ˙ b
31 9 28 30 mpbir2and φ F H G Ismt G