| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismot.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ismot.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | motgrp.1 | ⊢ ( 𝜑  →  𝐺  ∈  𝑉 ) | 
						
							| 4 |  | motco.2 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 5 | 1 2 3 4 | motf1o | ⊢ ( 𝜑  →  𝐹 : 𝑃 –1-1-onto→ 𝑃 ) | 
						
							| 6 |  | f1ocnv | ⊢ ( 𝐹 : 𝑃 –1-1-onto→ 𝑃  →  ◡ 𝐹 : 𝑃 –1-1-onto→ 𝑃 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  ◡ 𝐹 : 𝑃 –1-1-onto→ 𝑃 ) | 
						
							| 8 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  𝐺  ∈  𝑉 ) | 
						
							| 9 |  | f1of | ⊢ ( ◡ 𝐹 : 𝑃 –1-1-onto→ 𝑃  →  ◡ 𝐹 : 𝑃 ⟶ 𝑃 ) | 
						
							| 10 | 7 9 | syl | ⊢ ( 𝜑  →  ◡ 𝐹 : 𝑃 ⟶ 𝑃 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ◡ 𝐹 : 𝑃 ⟶ 𝑃 ) | 
						
							| 12 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  𝑎  ∈  𝑃 ) | 
						
							| 13 | 11 12 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( ◡ 𝐹 ‘ 𝑎 )  ∈  𝑃 ) | 
						
							| 14 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  𝑏  ∈  𝑃 ) | 
						
							| 15 | 11 14 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( ◡ 𝐹 ‘ 𝑏 )  ∈  𝑃 ) | 
						
							| 16 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  𝐹  ∈  ( 𝐺 Ismt 𝐺 ) ) | 
						
							| 17 | 1 2 8 13 15 16 | motcgr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑎 ) )  −  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) )  =  ( ( ◡ 𝐹 ‘ 𝑎 )  −  ( ◡ 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 18 |  | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑃 –1-1-onto→ 𝑃  ∧  𝑎  ∈  𝑃 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑎 ) )  =  𝑎 ) | 
						
							| 19 | 5 12 18 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑎 ) )  =  𝑎 ) | 
						
							| 20 |  | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑃 –1-1-onto→ 𝑃  ∧  𝑏  ∈  𝑃 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  𝑏 ) | 
						
							| 21 | 5 14 20 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  𝑏 ) | 
						
							| 22 | 19 21 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑎 ) )  −  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) )  =  ( 𝑎  −  𝑏 ) ) | 
						
							| 23 | 17 22 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) )  →  ( ( ◡ 𝐹 ‘ 𝑎 )  −  ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( 𝑎  −  𝑏 ) ) | 
						
							| 24 | 23 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( ( ◡ 𝐹 ‘ 𝑎 )  −  ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( 𝑎  −  𝑏 ) ) | 
						
							| 25 | 1 2 | ismot | ⊢ ( 𝐺  ∈  𝑉  →  ( ◡ 𝐹  ∈  ( 𝐺 Ismt 𝐺 )  ↔  ( ◡ 𝐹 : 𝑃 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( ( ◡ 𝐹 ‘ 𝑎 )  −  ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( 𝑎  −  𝑏 ) ) ) ) | 
						
							| 26 | 3 25 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  ∈  ( 𝐺 Ismt 𝐺 )  ↔  ( ◡ 𝐹 : 𝑃 –1-1-onto→ 𝑃  ∧  ∀ 𝑎  ∈  𝑃 ∀ 𝑏  ∈  𝑃 ( ( ◡ 𝐹 ‘ 𝑎 )  −  ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( 𝑎  −  𝑏 ) ) ) ) | 
						
							| 27 | 7 24 26 | mpbir2and | ⊢ ( 𝜑  →  ◡ 𝐹  ∈  ( 𝐺 Ismt 𝐺 ) ) |