| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismot.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ismot.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | motgrp.1 |  |-  ( ph -> G e. V ) | 
						
							| 4 |  | motco.2 |  |-  ( ph -> F e. ( G Ismt G ) ) | 
						
							| 5 | 1 2 3 4 | motf1o |  |-  ( ph -> F : P -1-1-onto-> P ) | 
						
							| 6 |  | f1ocnv |  |-  ( F : P -1-1-onto-> P -> `' F : P -1-1-onto-> P ) | 
						
							| 7 | 5 6 | syl |  |-  ( ph -> `' F : P -1-1-onto-> P ) | 
						
							| 8 | 3 | adantr |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> G e. V ) | 
						
							| 9 |  | f1of |  |-  ( `' F : P -1-1-onto-> P -> `' F : P --> P ) | 
						
							| 10 | 7 9 | syl |  |-  ( ph -> `' F : P --> P ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> `' F : P --> P ) | 
						
							| 12 |  | simprl |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> a e. P ) | 
						
							| 13 | 11 12 | ffvelcdmd |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( `' F ` a ) e. P ) | 
						
							| 14 |  | simprr |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> b e. P ) | 
						
							| 15 | 11 14 | ffvelcdmd |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( `' F ` b ) e. P ) | 
						
							| 16 | 4 | adantr |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> F e. ( G Ismt G ) ) | 
						
							| 17 | 1 2 8 13 15 16 | motcgr |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( ( F ` ( `' F ` a ) ) .- ( F ` ( `' F ` b ) ) ) = ( ( `' F ` a ) .- ( `' F ` b ) ) ) | 
						
							| 18 |  | f1ocnvfv2 |  |-  ( ( F : P -1-1-onto-> P /\ a e. P ) -> ( F ` ( `' F ` a ) ) = a ) | 
						
							| 19 | 5 12 18 | syl2an2r |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( F ` ( `' F ` a ) ) = a ) | 
						
							| 20 |  | f1ocnvfv2 |  |-  ( ( F : P -1-1-onto-> P /\ b e. P ) -> ( F ` ( `' F ` b ) ) = b ) | 
						
							| 21 | 5 14 20 | syl2an2r |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( F ` ( `' F ` b ) ) = b ) | 
						
							| 22 | 19 21 | oveq12d |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( ( F ` ( `' F ` a ) ) .- ( F ` ( `' F ` b ) ) ) = ( a .- b ) ) | 
						
							| 23 | 17 22 | eqtr3d |  |-  ( ( ph /\ ( a e. P /\ b e. P ) ) -> ( ( `' F ` a ) .- ( `' F ` b ) ) = ( a .- b ) ) | 
						
							| 24 | 23 | ralrimivva |  |-  ( ph -> A. a e. P A. b e. P ( ( `' F ` a ) .- ( `' F ` b ) ) = ( a .- b ) ) | 
						
							| 25 | 1 2 | ismot |  |-  ( G e. V -> ( `' F e. ( G Ismt G ) <-> ( `' F : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( `' F ` a ) .- ( `' F ` b ) ) = ( a .- b ) ) ) ) | 
						
							| 26 | 3 25 | syl |  |-  ( ph -> ( `' F e. ( G Ismt G ) <-> ( `' F : P -1-1-onto-> P /\ A. a e. P A. b e. P ( ( `' F ` a ) .- ( `' F ` b ) ) = ( a .- b ) ) ) ) | 
						
							| 27 | 7 24 26 | mpbir2and |  |-  ( ph -> `' F e. ( G Ismt G ) ) |