Metamath Proof Explorer


Theorem mpoaddf

Description: Addition is an operation on complex numbers. Version of ax-addf using maps-to notation, proved from the axioms of set theory and ax-addcl . (Contributed by GG, 31-Mar-2025)

Ref Expression
Assertion mpoaddf x,yx+y:×

Proof

Step Hyp Ref Expression
1 eqid x,yx+y=x,yx+y
2 ovex x+yV
3 1 2 fnmpoi x,yx+yFn×
4 simpll xyz=x+yx
5 simplr xyz=x+yy
6 addcl xyx+y
7 eleq1a x+yz=x+yz
8 6 7 syl xyz=x+yz
9 8 imp xyz=x+yz
10 4 5 9 3jca xyz=x+yxyz
11 10 ssoprab2i xyz|xyz=x+yxyz|xyz
12 df-mpo x,yx+y=xyz|xyz=x+y
13 dfxp3 ××=xyz|xyz
14 11 12 13 3sstr4i x,yx+y××
15 dff2 x,yx+y:×x,yx+yFn×x,yx+y××
16 3 14 15 mpbir2an x,yx+y:×