Metamath Proof Explorer


Theorem mpomptsx

Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion mpomptsx xA,yBC=zxAx×B1stz/x2ndz/yC

Proof

Step Hyp Ref Expression
1 vex uV
2 vex vV
3 1 2 op1std z=uv1stz=u
4 3 csbeq1d z=uv1stz/x2ndz/yC=u/x2ndz/yC
5 1 2 op2ndd z=uv2ndz=v
6 5 csbeq1d z=uv2ndz/yC=v/yC
7 6 csbeq2dv z=uvu/x2ndz/yC=u/xv/yC
8 4 7 eqtrd z=uv1stz/x2ndz/yC=u/xv/yC
9 8 mpomptx zuAu×u/xB1stz/x2ndz/yC=uA,vu/xBu/xv/yC
10 nfcv _ux×B
11 nfcv _xu
12 nfcsb1v _xu/xB
13 11 12 nfxp _xu×u/xB
14 sneq x=ux=u
15 csbeq1a x=uB=u/xB
16 14 15 xpeq12d x=ux×B=u×u/xB
17 10 13 16 cbviun xAx×B=uAu×u/xB
18 17 mpteq1i zxAx×B1stz/x2ndz/yC=zuAu×u/xB1stz/x2ndz/yC
19 nfcv _uB
20 nfcv _uC
21 nfcv _vC
22 nfcsb1v _xu/xv/yC
23 nfcv _yu
24 nfcsb1v _yv/yC
25 23 24 nfcsbw _yu/xv/yC
26 csbeq1a y=vC=v/yC
27 csbeq1a x=uv/yC=u/xv/yC
28 26 27 sylan9eqr x=uy=vC=u/xv/yC
29 19 12 20 21 22 25 15 28 cbvmpox xA,yBC=uA,vu/xBu/xv/yC
30 9 18 29 3eqtr4ri xA,yBC=zxAx×B1stz/x2ndz/yC