Metamath Proof Explorer


Theorem mpomulnzcnf

Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. Version of mulnzcnf using maps-to notation, which does not require ax-mulf . (Contributed by GG, 18-Apr-2025)

Ref Expression
Assertion mpomulnzcnf x 0 , y 0 x y : 0 × 0 0

Proof

Step Hyp Ref Expression
1 eqid x 0 , y 0 x y = x 0 , y 0 x y
2 ovex x y V
3 1 2 fnmpoi x 0 , y 0 x y Fn 0 × 0
4 oveq12 x = u y = v x y = u v
5 ovex u v V
6 4 1 5 ovmpoa u 0 v 0 u x 0 , y 0 x y v = u v
7 eldifsn u 0 u u 0
8 eldifsn v 0 v v 0
9 mulcl u v u v
10 9 ad2ant2r u u 0 v v 0 u v
11 mulne0 u u 0 v v 0 u v 0
12 10 11 jca u u 0 v v 0 u v u v 0
13 7 8 12 syl2anb u 0 v 0 u v u v 0
14 eldifsn u v 0 u v u v 0
15 13 14 sylibr u 0 v 0 u v 0
16 6 15 eqeltrd u 0 v 0 u x 0 , y 0 x y v 0
17 16 rgen2 u 0 v 0 u x 0 , y 0 x y v 0
18 ffnov x 0 , y 0 x y : 0 × 0 0 x 0 , y 0 x y Fn 0 × 0 u 0 v 0 u x 0 , y 0 x y v 0
19 3 17 18 mpbir2an x 0 , y 0 x y : 0 × 0 0