Metamath Proof Explorer


Theorem mpomulnzcnf

Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. Version of mulnzcnf using maps-to notation, which does not require ax-mulf . (Contributed by GG, 18-Apr-2025)

Ref Expression
Assertion mpomulnzcnf ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) : ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⟶ ( ℂ ∖ { 0 } )

Proof

Step Hyp Ref Expression
1 eqid ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) )
2 ovex ( 𝑥 · 𝑦 ) ∈ V
3 1 2 fnmpoi ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) Fn ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) )
4 oveq12 ( ( 𝑥 = 𝑢𝑦 = 𝑣 ) → ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑣 ) )
5 ovex ( 𝑢 · 𝑣 ) ∈ V
6 4 1 5 ovmpoa ( ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑢 ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) = ( 𝑢 · 𝑣 ) )
7 eldifsn ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑢 ∈ ℂ ∧ 𝑢 ≠ 0 ) )
8 eldifsn ( 𝑣 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑣 ∈ ℂ ∧ 𝑣 ≠ 0 ) )
9 mulcl ( ( 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( 𝑢 · 𝑣 ) ∈ ℂ )
10 9 ad2ant2r ( ( ( 𝑢 ∈ ℂ ∧ 𝑢 ≠ 0 ) ∧ ( 𝑣 ∈ ℂ ∧ 𝑣 ≠ 0 ) ) → ( 𝑢 · 𝑣 ) ∈ ℂ )
11 mulne0 ( ( ( 𝑢 ∈ ℂ ∧ 𝑢 ≠ 0 ) ∧ ( 𝑣 ∈ ℂ ∧ 𝑣 ≠ 0 ) ) → ( 𝑢 · 𝑣 ) ≠ 0 )
12 10 11 jca ( ( ( 𝑢 ∈ ℂ ∧ 𝑢 ≠ 0 ) ∧ ( 𝑣 ∈ ℂ ∧ 𝑣 ≠ 0 ) ) → ( ( 𝑢 · 𝑣 ) ∈ ℂ ∧ ( 𝑢 · 𝑣 ) ≠ 0 ) )
13 7 8 12 syl2anb ( ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑢 · 𝑣 ) ∈ ℂ ∧ ( 𝑢 · 𝑣 ) ≠ 0 ) )
14 eldifsn ( ( 𝑢 · 𝑣 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑢 · 𝑣 ) ∈ ℂ ∧ ( 𝑢 · 𝑣 ) ≠ 0 ) )
15 13 14 sylibr ( ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑢 · 𝑣 ) ∈ ( ℂ ∖ { 0 } ) )
16 6 15 eqeltrd ( ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑢 ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) ∈ ( ℂ ∖ { 0 } ) )
17 16 rgen2 𝑢 ∈ ( ℂ ∖ { 0 } ) ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( 𝑢 ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) ∈ ( ℂ ∖ { 0 } )
18 ffnov ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) : ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⟶ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) Fn ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ∧ ∀ 𝑢 ∈ ( ℂ ∖ { 0 } ) ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( 𝑢 ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) ∈ ( ℂ ∖ { 0 } ) ) )
19 3 17 18 mpbir2an ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) : ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⟶ ( ℂ ∖ { 0 } )