| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) |
| 2 |
|
ovex |
⊢ ( 𝑥 · 𝑦 ) ∈ V |
| 3 |
1 2
|
fnmpoi |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) Fn ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) |
| 4 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑣 ) ) |
| 5 |
|
ovex |
⊢ ( 𝑢 · 𝑣 ) ∈ V |
| 6 |
4 1 5
|
ovmpoa |
⊢ ( ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑢 ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) = ( 𝑢 · 𝑣 ) ) |
| 7 |
|
eldifsn |
⊢ ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑢 ∈ ℂ ∧ 𝑢 ≠ 0 ) ) |
| 8 |
|
eldifsn |
⊢ ( 𝑣 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑣 ∈ ℂ ∧ 𝑣 ≠ 0 ) ) |
| 9 |
|
mulcl |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ) → ( 𝑢 · 𝑣 ) ∈ ℂ ) |
| 10 |
9
|
ad2ant2r |
⊢ ( ( ( 𝑢 ∈ ℂ ∧ 𝑢 ≠ 0 ) ∧ ( 𝑣 ∈ ℂ ∧ 𝑣 ≠ 0 ) ) → ( 𝑢 · 𝑣 ) ∈ ℂ ) |
| 11 |
|
mulne0 |
⊢ ( ( ( 𝑢 ∈ ℂ ∧ 𝑢 ≠ 0 ) ∧ ( 𝑣 ∈ ℂ ∧ 𝑣 ≠ 0 ) ) → ( 𝑢 · 𝑣 ) ≠ 0 ) |
| 12 |
10 11
|
jca |
⊢ ( ( ( 𝑢 ∈ ℂ ∧ 𝑢 ≠ 0 ) ∧ ( 𝑣 ∈ ℂ ∧ 𝑣 ≠ 0 ) ) → ( ( 𝑢 · 𝑣 ) ∈ ℂ ∧ ( 𝑢 · 𝑣 ) ≠ 0 ) ) |
| 13 |
7 8 12
|
syl2anb |
⊢ ( ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑢 · 𝑣 ) ∈ ℂ ∧ ( 𝑢 · 𝑣 ) ≠ 0 ) ) |
| 14 |
|
eldifsn |
⊢ ( ( 𝑢 · 𝑣 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑢 · 𝑣 ) ∈ ℂ ∧ ( 𝑢 · 𝑣 ) ≠ 0 ) ) |
| 15 |
13 14
|
sylibr |
⊢ ( ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑢 · 𝑣 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 16 |
6 15
|
eqeltrd |
⊢ ( ( 𝑢 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑢 ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 17 |
16
|
rgen2 |
⊢ ∀ 𝑢 ∈ ( ℂ ∖ { 0 } ) ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( 𝑢 ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) ∈ ( ℂ ∖ { 0 } ) |
| 18 |
|
ffnov |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) : ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⟶ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) Fn ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ∧ ∀ 𝑢 ∈ ( ℂ ∖ { 0 } ) ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( 𝑢 ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) 𝑣 ) ∈ ( ℂ ∖ { 0 } ) ) ) |
| 19 |
3 17 18
|
mpbir2an |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · 𝑦 ) ) : ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⟶ ( ℂ ∖ { 0 } ) |