Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Metamath formal systems
mppspstlem
Next ⟩
mppsval
Metamath Proof Explorer
Ascii
Unicode
Theorem
mppspstlem
Description:
Lemma for
mppspst
.
(Contributed by
Mario Carneiro
, 18-Jul-2016)
Ref
Expression
Hypotheses
mppsval.p
⊢
P
=
mPreSt
⁡
T
mppsval.j
⊢
J
=
mPPSt
⁡
T
mppsval.c
⊢
C
=
mCls
⁡
T
Assertion
mppspstlem
⊢
d
h
a
|
d
h
a
∈
P
∧
a
∈
d
C
h
⊆
P
Proof
Step
Hyp
Ref
Expression
1
mppsval.p
⊢
P
=
mPreSt
⁡
T
2
mppsval.j
⊢
J
=
mPPSt
⁡
T
3
mppsval.c
⊢
C
=
mCls
⁡
T
4
df-oprab
⊢
d
h
a
|
d
h
a
∈
P
∧
a
∈
d
C
h
=
x
|
∃
d
∃
h
∃
a
x
=
d
h
a
∧
d
h
a
∈
P
∧
a
∈
d
C
h
5
df-ot
⊢
d
h
a
=
d
h
a
6
5
eqeq2i
⊢
x
=
d
h
a
↔
x
=
d
h
a
7
6
biimpri
⊢
x
=
d
h
a
→
x
=
d
h
a
8
7
eleq1d
⊢
x
=
d
h
a
→
x
∈
P
↔
d
h
a
∈
P
9
8
biimpar
⊢
x
=
d
h
a
∧
d
h
a
∈
P
→
x
∈
P
10
9
adantrr
⊢
x
=
d
h
a
∧
d
h
a
∈
P
∧
a
∈
d
C
h
→
x
∈
P
11
10
exlimiv
⊢
∃
a
x
=
d
h
a
∧
d
h
a
∈
P
∧
a
∈
d
C
h
→
x
∈
P
12
11
exlimivv
⊢
∃
d
∃
h
∃
a
x
=
d
h
a
∧
d
h
a
∈
P
∧
a
∈
d
C
h
→
x
∈
P
13
12
abssi
⊢
x
|
∃
d
∃
h
∃
a
x
=
d
h
a
∧
d
h
a
∈
P
∧
a
∈
d
C
h
⊆
P
14
4
13
eqsstri
⊢
d
h
a
|
d
h
a
∈
P
∧
a
∈
d
C
h
⊆
P