Metamath Proof Explorer


Theorem mppspstlem

Description: Lemma for mppspst . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mppsval.p P = mPreSt T
mppsval.j J = mPPSt T
mppsval.c C = mCls T
Assertion mppspstlem d h a | d h a P a d C h P

Proof

Step Hyp Ref Expression
1 mppsval.p P = mPreSt T
2 mppsval.j J = mPPSt T
3 mppsval.c C = mCls T
4 df-oprab d h a | d h a P a d C h = x | d h a x = d h a d h a P a d C h
5 df-ot d h a = d h a
6 5 eqeq2i x = d h a x = d h a
7 6 biimpri x = d h a x = d h a
8 7 eleq1d x = d h a x P d h a P
9 8 biimpar x = d h a d h a P x P
10 9 adantrr x = d h a d h a P a d C h x P
11 10 exlimiv a x = d h a d h a P a d C h x P
12 11 exlimivv d h a x = d h a d h a P a d C h x P
13 12 abssi x | d h a x = d h a d h a P a d C h P
14 4 13 eqsstri d h a | d h a P a d C h P