Metamath Proof Explorer


Theorem mpteq12dvaOLD

Description: Obsolete version of mpteq12dva as of 11-Nov-2024. (Contributed by Mario Carneiro, 26-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mpteq12dv.1 φ A = C
mpteq12dva.2 φ x A B = D
Assertion mpteq12dvaOLD φ x A B = x C D

Proof

Step Hyp Ref Expression
1 mpteq12dv.1 φ A = C
2 mpteq12dva.2 φ x A B = D
3 1 alrimiv φ x A = C
4 2 ralrimiva φ x A B = D
5 mpteq12f x A = C x A B = D x A B = x C D
6 3 4 5 syl2anc φ x A B = x C D