Metamath Proof Explorer


Theorem mpteq12f

Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013)

Ref Expression
Assertion mpteq12f xA=CxAB=DxAB=xCD

Proof

Step Hyp Ref Expression
1 nfa1 xxA=C
2 nfra1 xxAB=D
3 1 2 nfan xxA=CxAB=D
4 nfv yxA=CxAB=D
5 rspa xAB=DxAB=D
6 5 eqeq2d xAB=DxAy=By=D
7 6 pm5.32da xAB=DxAy=BxAy=D
8 sp xA=CA=C
9 8 eleq2d xA=CxAxC
10 9 anbi1d xA=CxAy=DxCy=D
11 7 10 sylan9bbr xA=CxAB=DxAy=BxCy=D
12 3 4 11 opabbid xA=CxAB=Dxy|xAy=B=xy|xCy=D
13 df-mpt xAB=xy|xAy=B
14 df-mpt xCD=xy|xCy=D
15 12 13 14 3eqtr4g xA=CxAB=DxAB=xCD