Metamath Proof Explorer


Theorem mrefg2

Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypothesis isnacs.f F=mrClsC
Assertion mrefg2 CMooreXg𝒫XFinS=Fgg𝒫SFinS=Fg

Proof

Step Hyp Ref Expression
1 isnacs.f F=mrClsC
2 1 mrcssid CMooreXgXgFg
3 simpr CMooreXgFggFg
4 1 mrcssv CMooreXFgX
5 4 adantr CMooreXgFgFgX
6 3 5 sstrd CMooreXgFggX
7 2 6 impbida CMooreXgXgFg
8 vex gV
9 8 elpw g𝒫XgX
10 8 elpw g𝒫FggFg
11 7 9 10 3bitr4g CMooreXg𝒫Xg𝒫Fg
12 11 anbi1d CMooreXg𝒫XgFing𝒫FggFin
13 elin g𝒫XFing𝒫XgFin
14 elin g𝒫FgFing𝒫FggFin
15 12 13 14 3bitr4g CMooreXg𝒫XFing𝒫FgFin
16 pweq S=Fg𝒫S=𝒫Fg
17 16 ineq1d S=Fg𝒫SFin=𝒫FgFin
18 17 eleq2d S=Fgg𝒫SFing𝒫FgFin
19 18 bibi2d S=Fgg𝒫XFing𝒫SFing𝒫XFing𝒫FgFin
20 15 19 syl5ibrcom CMooreXS=Fgg𝒫XFing𝒫SFin
21 20 pm5.32rd CMooreXg𝒫XFinS=Fgg𝒫SFinS=Fg
22 21 rexbidv2 CMooreXg𝒫XFinS=Fgg𝒫SFinS=Fg