Metamath Proof Explorer


Theorem mrexval

Description: The set of "raw expressions", which are expressions without a typecode, that is, just sequences of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrexval.c C=mCNT
mrexval.v V=mVRT
mrexval.r R=mRExT
Assertion mrexval TWR=WordCV

Proof

Step Hyp Ref Expression
1 mrexval.c C=mCNT
2 mrexval.v V=mVRT
3 mrexval.r R=mRExT
4 elex TWTV
5 fveq2 t=TmCNt=mCNT
6 5 1 eqtr4di t=TmCNt=C
7 fveq2 t=TmVRt=mVRT
8 7 2 eqtr4di t=TmVRt=V
9 6 8 uneq12d t=TmCNtmVRt=CV
10 wrdeq mCNtmVRt=CVWordmCNtmVRt=WordCV
11 9 10 syl t=TWordmCNtmVRt=WordCV
12 df-mrex mREx=tVWordmCNtmVRt
13 fvex mCNtV
14 fvex mVRtV
15 13 14 unex mCNtmVRtV
16 15 wrdexi WordmCNtmVRtV
17 11 12 16 fvmpt3i TVmRExT=WordCV
18 4 17 syl TWmRExT=WordCV
19 3 18 eqtrid TWR=WordCV